-
公开(公告)号:CN119976792A
公开(公告)日:2025-05-13
申请号:CN202510123412.2
申请日:2025-01-26
Applicant: 哈尔滨工业大学 , 哈尔滨电气科学技术有限公司
IPC: C01B32/05 , H01M4/133 , H01M4/1393 , H01M4/587 , H01M10/054
Abstract: 一种氧辅助低温刻蚀煤前驱体中无定形组分制备煤基硬碳材料的方法,属于电极材料制备技术领域。所述方法创新点为在常规高温碳化处理前引入温和预刻蚀工艺:在携带有少量氧气的惰性气氛保护下,通过10min~1h的氧气参与预刻蚀反应,即可实现煤基硬碳负极材料钠离子储存性能的综合提升,包括高可逆容量、高平台容量、高首圈库伦效率和优异倍率性能。本发明获得的煤基硬碳相比于上述工艺获得的碳材料,无需额外添加蔗糖、生物质等前驱体,仅借助温和预刻蚀处理即可有效破解煤基结构复杂性给高性能硬碳负极调控带来的技术困境,且这一制备方法能够与现有硬碳批量生产线快速匹配,具有重要的实际应用潜力。
-
公开(公告)号:CN119706831A
公开(公告)日:2025-03-28
申请号:CN202411668103.5
申请日:2024-11-21
Applicant: 哈尔滨电气科学技术有限公司 , 哈尔滨工业大学
IPC: C01B32/318 , C01B32/336 , C01B32/348 , H01M4/587 , H01M10/054
Abstract: 一种基于配煤工艺的同质异构碳负极材料的构筑方法,属于电化学储能材料技术领域。方法如下:煤种的选择与预处理;煤种配比;煤种混合与预热解;混合煤样高温炭化;后处理与成型。本发明通过科学配比无烟煤与褐煤,结合预处理、混合预热解、高温炭化及后处理工艺,实现了硬碳材料微观结构的优化,实现储钠性能的提升。不仅工艺简单、成本低廉,适合大规模工业化生产,而且所制备的硬碳负极材料展现出卓越的循环稳定性和较高的比容量,有效提升了钠离子电池的性能。本发明充分利用了无烟煤与褐煤的各自优势,为钠离子电池负极材料的研发开辟了新路径,具有显著的技术创新性和应用价值。
-
公开(公告)号:CN119506916A
公开(公告)日:2025-02-25
申请号:CN202411674525.3
申请日:2024-11-21
Applicant: 中国大唐集团科技创新有限公司 , 哈尔滨工业大学
Abstract: 一种用于提升大电流电解水制氢中电极表面气泡释放效率的方法,属于氢能制取技术领域,具体方案包括以下步骤:步骤一、向质子交换膜电解槽施加脉冲电压进行水电解制氢,施加的脉冲电流为0.5‑2A,施加的脉冲电压范围为1.4‑1.6V;步骤二、将电解液去离子水输送到质子交换膜电解槽的阳极室,从而引发氧化反应制取氢气。本发明脉冲动态电解技术通过调整电源供电方式即可实现PEMWE大电流制氢性能提升。此外,由于脉冲间歇期间电压为零,总能耗实际仅包括脉冲电压施加时间内的电能消耗,因此从能耗角度来看,脉冲动态电解技术更具优势。脉冲动态电解技术有望在PEMWE大电流制氢中促进气泡释放并缓解极化现象,提升系统的制氢效率和能量利用率。
-
公开(公告)号:CN114367193A
公开(公告)日:2022-04-19
申请号:CN202210082173.7
申请日:2022-01-24
Applicant: 哈尔滨工业大学
Abstract: 一种基于活性焦功能分区的高效低温联合脱硫脱硝系统及方法,属于工业烟气治理领域。所述系统分别根据脱硫、脱硝与活性焦理化功能需求的匹配关系,其中脱硫过程采用具有氧官能团掺杂的分级孔活性焦;吸附脱除饱和的活性焦通过再生系统进行再生获得高浓度SO2/H2SO4资源化产品,然后与部分新鲜焦混合进入脱硫反应器循环;经过脱硫和脱水后的烟气进入脱硝环节,采用具有氮掺杂的微孔活性焦为催化剂,在喷入的NH3的作用下将烟气中的NOx还原为N2和H2O,实现NOx的高效脱除。该工艺通过区分脱硫、脱硝过程与活性焦理化功能结构之间的构效关系,同时实现了联合脱硫脱硝的高脱硫率和高脱硝率,简单易行,不增加设备和系统的复杂性,不增加过多投资和运行成本。
-
公开(公告)号:CN114293206A
公开(公告)日:2022-04-08
申请号:CN202210005352.0
申请日:2022-01-05
Applicant: 哈尔滨工业大学
IPC: C25B1/30 , C25B1/50 , C25B11/091
Abstract: 本发明公开了一种脉冲电合成H2O2的方法,所述方法以松木或桐木为廉价碳源,通过碳化、CO2干冰球磨等步骤,制备氧掺杂生物炭基电催化剂,将其进一步负载于基底上制成片状电极,在脉冲电位条件下供电,可在电解体系内高效合成H2O2。本发明针对传统恒流/恒压氧气电还原制H2O2技术中,存在的阴极材料成本高、难规模化、恒流/恒压供电条件H2O2产量低等问题,使用廉价的桐木/松木为原料,并采用干冰球磨法实现生物炭基电催化剂中氧的掺杂。在合成H2O2过程中,采用脉冲方式供电,可有效避免H2O2的无效分解路径,提高H2O2的产量,具有材料成本低廉、制备方法简便、H2O2产量高、供电方式易规模化等突出优势。
-
公开(公告)号:CN114291806A
公开(公告)日:2022-04-08
申请号:CN202210027150.6
申请日:2022-01-11
Applicant: 哈尔滨工业大学
IPC: C01B32/05 , C01B32/205 , C01B32/318 , C01B32/348 , H01G11/24 , H01G11/32
Abstract: 本发明公开了一种低阶煤基多孔碳石墨化度的多尺度调控方法,所述方法包括如下步骤:步骤一、低阶煤前处理;步骤二、前驱体原料与活化剂、催化剂的固相机械化学处理;步骤三、混合物的低温熔融;步骤四、混合物的高温活化;步骤五、活化产物的后处理。该方法以低阶弱粘或不粘煤作为碳源,采用机械化学与低温熔融的组合步骤,得到深度交联与均匀混合的碳源‑钾基活化剂‑硼基石墨化度催化剂固相混合物;在钾基活化剂刻蚀造孔的同时,实现低阶煤碳骨架热转化过程中,钾、硼两种元素低温催化石墨化机制的协同。本发明制备的碳材料不仅具有发达的孔隙,同时呈现出长程石墨化结构的均匀发展,作为超级电容电极材料展现出优异的导电性能及倍率性能。
-
公开(公告)号:CN114134511A
公开(公告)日:2022-03-04
申请号:CN202210001131.6
申请日:2022-01-04
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种两步法电解水煤浆制氢的方法,所述方法包括如下步骤:步骤1:含Fe2+电解液的配置;步骤2:水煤浆的配置;步骤3:电解制氢;步骤4:含Fe3+电解液的循环;步骤5:水热体系中煤对Fe3+的还原;步骤6:水热体系中溶液的循环。本发明的“两步”法由于将煤还原Fe3+的功能解耦至水热体系,因而避免了在电解制氢体系中加入煤粒,大大简化了电解水煤浆制氢体系的电解液组成,避免了煤粒对电极及质子交换膜的磨损,提高了体系的安全性。此外,在水热体系中进行Fe3+的还原反应可通过提高温度、强化搅拌等方式实现,不受限于质子交换膜无法在较高电解质温度下工作的缺陷,从而提高了Fe3+的还原效率。
-
公开(公告)号:CN112629281A
公开(公告)日:2021-04-09
申请号:CN202011373592.3
申请日:2020-11-30
Applicant: 哈尔滨工业大学
Abstract: 一种具有负荷适应性的燃煤烟气余能回收填料塔及系统,属于燃煤烟气余能回收技术领域,用以解决现有填料塔在对燃煤烟气进行处理时不能有效提高热交换效率的问题。本发明提出一种新型填料塔和包含该填料塔的系统,该填料塔包括塔体、液体收集器、填料支撑板、规整填料、填料压板、液体分布器和除雾器;包含该填料塔的系统包括填料塔、蒸汽子系统、疏水子系统、热网、吸收式热泵、工艺水子系统和脱硫塔。本发明在对燃煤烟气进行处理时有效提高了热交换效率,进一步具有节水、减排的效果,可用于对燃煤烟气进行余能回收。
-
公开(公告)号:CN110425571B
公开(公告)日:2021-02-19
申请号:CN201910666293.X
申请日:2019-07-23
Applicant: 哈尔滨工业大学
IPC: F23R3/28
Abstract: 本发明提出一种用于高超声速飞行器超燃冲压发动机的三柱燃料供给结构,该结构的三个柱体结构安装在基座上,呈直线排列,两两间距为5mm;多孔外壳为金属颗粒烧结的多孔介质材料构成,多孔外壳包裹在空心支撑杆顶部并烧结为柱状结构整体;燃料分配给三个柱体结构,并通过空心支撑杆底部注入口进入多孔外壳的空腔内。本发明解决了现有高超声速飞行器超燃冲压发动机内燃料供给结构无法长时间工作的问题,采用三个金属颗粒烧结多孔材料制成的空心柱状结构来同时进行燃料的注入,在燃料供给的同时利用燃料进行全覆盖的发汗冷却,同时利用三柱状结构的设计平衡冷却需求与流量分配之间的关系。
-
公开(公告)号:CN110330016A
公开(公告)日:2019-10-15
申请号:CN201910736936.3
申请日:2019-08-10
Applicant: 哈尔滨工业大学
IPC: C01B32/33 , C01B32/348
Abstract: 一种无烟煤基多孔碳石墨微晶和孔隙的一步协同发展方法,属于多孔碳材料制备技术领域。本发明针对多孔碳制备过程中孔隙发展与高质量微晶结构的矛盾,采用化学活化工艺,实现兼具发达孔隙和微晶结构的多孔碳制备。具体为以高阶煤(无烟煤)为原料,通过钾基活化剂与煤粉充分混合,经过一步化学活化及后续清洗干燥过程制备无烟煤基多孔碳材料。通过改变温度可协同调控多孔碳孔隙配组和微晶结构,进而获得孔隙发达和石墨微晶含量高的多孔碳材料。所得无烟煤基多孔碳比表面积可达3214.5m2/g,总孔容可达1.83cm3/g,且具有高质量的石墨微晶结构。本发明在储能技术(例如超级电容器)等方面具有广阔的应用前景。
-
-
-
-
-
-
-
-
-