-
公开(公告)号:CN105375254B
公开(公告)日:2018-04-24
申请号:CN201510907163.2
申请日:2015-12-09
Applicant: 哈尔滨工业大学
Abstract: 高重频大能量可调谐激光循环系统的控制方法及该系统的流速验证方法,涉及一种激光循环系统。为了解决现有可调谐激光的循环系统的控制过程复杂的问题。所述控制方法为根据需求,确定循环染料池中的液体染料的高度h和黏滞系数η;设置液体染料的流动方向;根据雷诺参数Re=ηh/v,使雷诺参数Re<2000,获得液体染料控制流速v;控制系统采用基于负反馈原理利用实时采集的实际流速修正流速控制指令。所述流速验证方法包括:根据雷诺参数确定流速上限,根据传统办法确定流速下限,待验证的可调谐激光循环系统的流速在流速上限和流速下限范围内时,该流速才可行。本发明用于高重频大能量可调谐激光循环系统。
-
公开(公告)号:CN105548023A
公开(公告)日:2016-05-04
申请号:CN201510990762.5
申请日:2015-12-28
Applicant: 哈尔滨工业大学
IPC: G01N21/17
CPC classification number: G01N21/1702 , G01N2021/1704
Abstract: 本发明公开了一种基于光纤谐振腔的倏逝波型光声光谱微量气体传感器及测量方法,所述传感器由半导体激光源、光纤合束器、锥形光纤、石英音叉、相位调制器构成,其测量方法如下:步骤一、半导体激光源发射出的激光输入光纤合束器,经相位调制器后使得光纤合束器构成光学谐振腔,光纤内的激光功率得到放大增强,继而使得锥形光纤处产生较强的光学倏逝场;步骤二、待测目标气体吸收锥形光纤处的倏逝波场能量,产生声波场,石英音叉探测声波信号,反演气体浓度。本发明有效地提高了激光激发功率,进而极大地改进了光声光谱气体传感器的探测灵敏度。
-
公开(公告)号:CN105548023B
公开(公告)日:2019-04-02
申请号:CN201510990762.5
申请日:2015-12-28
Applicant: 哈尔滨工业大学
IPC: G01N21/17
Abstract: 本发明公开了一种基于光纤谐振腔的倏逝波型光声光谱微量气体传感器及测量方法,所述传感器由半导体激光源、光纤合束器、锥形光纤、石英音叉、相位调制器构成,其测量方法如下:步骤一、半导体激光源发射出的激光输入光纤合束器,经相位调制器后使得光纤合束器构成光学谐振腔,光纤内的激光功率得到放大增强,继而使得锥形光纤处产生较强的光学倏逝场;步骤二、待测目标气体吸收锥形光纤处的倏逝波场能量,产生声波场,石英音叉探测声波信号,反演气体浓度。本发明有效地提高了激光激发功率,进而极大地改进了光声光谱气体传感器的探测灵敏度。
-
公开(公告)号:CN105514778B
公开(公告)日:2018-09-07
申请号:CN201511017299.2
申请日:2015-12-29
Applicant: 哈尔滨工业大学
Abstract: 一种可调谐激光的泵浦系统及采用该系统获得可调谐激光的方法,属于光学领域。解决现有基于固定分光比的光学分束片方式实现的大能量可调谐激光泵浦光路难以兼顾多种可调谐激光工作物质最佳泵浦条件需要的问题。伺服电机用于控制渐变反射率分束片移动,使入射至渐变反射率分束片上的激光光斑在其表面发生横向移动,激光入射至渐变反射率分束片,经渐变反射率分束片反射的光作为振荡器的泵浦源,振荡器在该泵浦源作用下输出可调谐种子激光,并入射至放大器,经渐变反射率分束片透射的光入射至全反镜,经全反镜反射后的光作为泵浦光入射至放大器,放大器通过泵浦光的泵浦对可调谐种子激光进行放大后,输出可调谐激光。它用于输出大能量可调谐激光。
-
公开(公告)号:CN105425226B
公开(公告)日:2018-03-30
申请号:CN201510975499.2
申请日:2015-12-22
Applicant: 哈尔滨工业大学
Abstract: 条纹管成像激光雷达中最优信号宽度的匹配方法,本发明涉及激光雷达中最优信号宽度的匹配方法。本发明是要解决目前的条纹管成像激光雷达在成像过程中并未对信号宽度做最优化处理,导致雷达系统无法获得最高的距离精度,测绘的目标轮廓达不到最清晰的程度。根据条纹管成像激光雷达系统参数确定系统误差和随机误差,根据系统误差和随机误差得到总距离精度随总信号宽度变化的数值模型,根据数值模型极值点确定最佳总信号宽度;根据总信号宽度、静态信号宽度和激光脉宽之间的关系,确定最佳静态信号宽度;通过计算机闭环控制模块和matlab图像处理模块的运算,使静态信号宽度与最佳静态信号宽度相一致。本发明属于雷达技术领域。
-
公开(公告)号:CN105514778A
公开(公告)日:2016-04-20
申请号:CN201511017299.2
申请日:2015-12-29
Applicant: 哈尔滨工业大学
Abstract: 一种可调谐激光的泵浦系统及采用该系统获得可谐调激光的方法,属于光学领域。解决现有基于固定分光比的光学分束片方式实现的大能量可调谐激光泵浦光路难以兼顾多种可调谐激光工作物质最佳泵浦条件需要的问题。伺服电机用于控制渐变反射率分束片移动,使入射至渐变反射率分束片上的激光光斑在其表面发生横向移动,激光入射至渐变反射率分束片,经渐变反射率分束片反射的光作为振荡器的泵浦源,振荡器在该泵浦源作用下输出可调谐种子激光,并入射至放大器,经渐变反射率分束片透射的光入射至全反镜,经全反镜反射后的光作为泵浦光入射至放大器,放大器通过泵浦光的泵浦对可调谐种子激光进行放大后,输出可调谐激光。它用于输出大能量可调谐激光。
-
公开(公告)号:CN105425226A
公开(公告)日:2016-03-23
申请号:CN201510975499.2
申请日:2015-12-22
Applicant: 哈尔滨工业大学
CPC classification number: G01S7/497 , G01S7/4802 , G01S17/06 , G01S17/89
Abstract: 条纹管成像激光雷达中最优信号宽度的匹配方法,本发明涉及激光雷达中最优信号宽度的匹配方法。本发明是要解决目前的条纹管成像激光雷达在成像过程中并未对信号宽度做最优化处理,导致雷达系统无法获得最高的距离精度,测绘的目标轮廓达不到最清晰的程度。根据条纹管成像激光雷达系统参数确定系统误差和随机误差,根据系统误差和随机误差得到总距离精度随总信号宽度变化的数值模型,根据数值模型极值点确定最佳总信号宽度;根据总信号宽度、静态信号宽度和激光脉宽之间的关系,确定最佳静态信号宽度;通过计算机闭环控制模块和matlab图像处理模块的运算,使静态信号宽度与最佳静态信号宽度相一致。本发明属于雷达技术领域。
-
公开(公告)号:CN105390919A
公开(公告)日:2016-03-09
申请号:CN201510882979.4
申请日:2015-12-03
Applicant: 哈尔滨工业大学
Abstract: 一种获得高重频、大能量可调谐激光的方法,涉及可调谐激光领域。本发明是为了解决现有的可调谐激光技术缺少对可调谐激光的高重频及大能量输出兼顾的问题。本发明对高重频泵浦脉冲激光进行时域调制,输出泵浦脉冲串激光经过光束整形系统对激光整形后,入射到一号反射棱镜上,经过一号反射棱镜的折射,入射至染料盒处,染料盒中的染料溶液受泵浦光脉冲激光激发,入射到输出耦合镜、光栅和调谐镜构成的谐振腔,在谐振腔内插入光束扩束器,防止腔内激光对光栅产生损坏,再通过旋转调谐镜的角度,由输出耦合镜输出的泵浦光脉冲激光经过二号反射棱镜和三号反射棱镜反射出来,实现对激光波长调谐。它用于对高重频泵浦脉冲激光进行调制。
-
公开(公告)号:CN105375254A
公开(公告)日:2016-03-02
申请号:CN201510907163.2
申请日:2015-12-09
Applicant: 哈尔滨工业大学
Abstract: 高重频大能量可调谐激光循环系统的控制方法及该系统的流速验证方法,涉及一种激光循环系统。为了解决现有可调谐激光的循环系统的控制过程复杂的问题。所述控制方法为根据需求,确定循环染料池中的液体染料的高度h和黏滞系数η;设置液体染料的流动方向;根据雷诺参数Re=ηh/v,使雷诺参数Re<2000,获得液体染料控制流速v;控制系统采用基于负反馈原理利用实时采集的实际流速修正流速控制指令。所述流速验证方法包括:根据雷诺参数确定流速上限,根据传统办法确定流速下限,待验证的可调谐激光循环系统的流速在流速上限和流速下限范围内时,该流速才可行。本发明用于高重频大能量可调谐激光循环系统。
-
公开(公告)号:CN105305214A
公开(公告)日:2016-02-03
申请号:CN201510882978.X
申请日:2015-12-03
Applicant: 哈尔滨工业大学
Abstract: 一种获得高重频、大能量紫外可调谐激光脉冲的方法,属于光学领域。解决了现有可调谐激光的高重频及大能量输出存在矛盾,二者难以兼顾的问题。本发明方法的具体过程为:首先,采用电子快门或电光晶体开关对可调谐激光脉冲进行调制,获得可调谐激光脉冲串时间序列;其次,对可调谐激光脉冲串时间序列进行频率变换,获得紫外可调谐激光脉冲;其中,可调谐激光脉冲为能量范围在1mJ至30mJ的激光脉冲。它主要用于输出紫外可调谐激光。
-
-
-
-
-
-
-
-
-