-
公开(公告)号:CN114235344B
公开(公告)日:2023-09-22
申请号:CN202111532036.0
申请日:2021-12-14
Applicant: 哈尔滨工业大学
IPC: G01M11/00
Abstract: 一种激光器谐振腔镜的调试装置及调试方法,属于激光器调试技术领域。一种激光器谐振腔镜的调试装置,包括He‑Ne激光器、负透镜、正透镜、反射镜Ⅰ、反射镜Ⅱ、反射镜Ⅲ、半透半反镜、CCD相机、电脑、谐振腔镜Ⅰ和谐振腔镜Ⅱ,He‑Ne激光器发射的激光依次穿过负透镜的中心、正透镜的中心,经反射镜Ⅰ反射至反射镜Ⅱ后,再反射至半透半反镜,穿过半透半反镜的光束入射至谐振腔镜Ⅰ或谐振腔镜Ⅱ,谐振腔镜Ⅰ或谐振腔镜Ⅱ将入射的光束反射至半透半反镜,经半透半反镜反射的光经反射镜Ⅲ反射至CCD相机,CCD相机与电脑电连接。本发明解决了传统激光器调试精度低的缺点,将传统激光器的调整精度提升了几个量级,提升了激光器的输出性能。
-
公开(公告)号:CN114235344A
公开(公告)日:2022-03-25
申请号:CN202111532036.0
申请日:2021-12-14
Applicant: 哈尔滨工业大学
IPC: G01M11/00
Abstract: 一种激光器谐振腔镜的调试装置及调试方法,属于激光器调试技术领域。一种激光器谐振腔镜的调试装置,包括He‑Ne激光器、负透镜、正透镜、反射镜Ⅰ、反射镜Ⅱ、反射镜Ⅲ、半透半反镜、CCD相机、电脑、谐振腔镜Ⅰ和谐振腔镜Ⅱ,He‑Ne激光器发射的激光依次穿过负透镜的中心、正透镜的中心,经反射镜Ⅰ反射至反射镜Ⅱ后,再反射至半透半反镜,穿过半透半反镜的光束入射至谐振腔镜Ⅰ或谐振腔镜Ⅱ,谐振腔镜Ⅰ或谐振腔镜Ⅱ将入射的光束反射至半透半反镜,经半透半反镜反射的光经反射镜Ⅲ反射至CCD相机,CCD相机与电脑电连接。本发明解决了传统激光器调试精度低的缺点,将传统激光器的调整精度提升了几个量级,提升了激光器的输出性能。
-
公开(公告)号:CN111175023A
公开(公告)日:2020-05-19
申请号:CN201911344029.0
申请日:2019-12-24
Applicant: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC: G01M11/02
Abstract: 本发明公开了一种用于LD端泵固体激光器中激光晶体热透镜焦距在线实时测量装置及方法,所述装置包括He-Ne激光器(1)、5-10倍第一扩束系统(2)、可变孔径光阑(3)、45°的632.8nm高反镜(4)、分束立方体(5)、45°的二色镜(6)、衰减片组(7)、2-5倍第二扩束系统(8)、相机(9)和导轨(10);利用所述高反镜(4)和分束立方体(5),调节He-Ne光与激光器泵浦光严格同光轴传输;通过所述第二扩束系统(8)使所述相机(9)上He-Ne成像光斑尽可能大,但不能超出所述相机(9)成像面元。该装置测量结果准确,能够快速地实现不同泵浦功率下激光晶体的热焦距测量,为激光器的补偿设计提供有力保障。
-
公开(公告)号:CN110957631A
公开(公告)日:2020-04-03
申请号:CN201911344608.5
申请日:2019-12-24
Applicant: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC: H01S3/131
Abstract: 本发明公开了一种激光稳定性控制方法,所述方法由以下步骤实现:步骤一、第一形态脉冲串激光经过偏振分光棱镜入射到激光谐振腔中进行振荡传播,所述第一形态脉冲串激光经过光电调节器件、1/4波片和第一平面镜以及温度控制单元,激光光学偏振态变为第一形态脉冲串激光,经过所述光电调节器件的调节可以形成振荡光路;步骤二、当所述振荡激光振荡到一定阈值次数时,开启LD泵浦激光,使谐振腔内的晶体产生脉冲激光;步骤三、当脉冲串激光获得了足够大的增益,关闭光电调节器件,开启温度控制单元,使其保持在指定温度下,当激光在所述温度控制单元中反复震荡到一定次数时,形成稳定的激光输出。本发明的优点在于稳定激光输出。
-
公开(公告)号:CN104752948B
公开(公告)日:2018-03-20
申请号:CN201510181767.3
申请日:2015-04-17
Applicant: 哈尔滨工业大学
IPC: H01S3/10 , H01S3/16 , H01S3/0941
Abstract: 本发明公开了一种利用456nm全固态激光泵浦Pr:YLF实现639nm激光输出的装置及方法,所述装置沿光束传播方向依次设置有光纤耦合输出的半导体激光器、第一非球面透镜、第二非球面透镜、第一平面镜、第一激光晶体、第一平凹镜、第二平凹镜、倍频晶体、第三平凹镜、第三非球面透镜、第二平面镜、第二激光晶体和第四平凹镜。本发明利用半导体端泵Nd:GdVO4晶体输出912nm激光,倍频后获得456nm激光作为泵浦源,用于泵浦Pr:YLG晶体并获得639nm橙光输出,解决了Pr:YLF激光器泵浦源相对匮乏的问题,为Pr:YLF激光器提供了一种新式的泵浦源,对于Pr:YLF激光器其他可见光波段激光的输出具有推动作用。
-
公开(公告)号:CN107271368A
公开(公告)日:2017-10-20
申请号:CN201710369282.6
申请日:2017-05-23
Applicant: 哈尔滨工业大学
CPC classification number: G01N21/1702 , G01N21/01 , G01N2021/0106 , G01N2201/068
Abstract: 本发明实施例涉及激光检测技术领域,尤其涉及一种内腔增强光声光谱式痕量气体传感器装置,所述装置包括沿光束传播方向依次设置的半导体激光器、斩波器、激光准直聚焦系统、前腔镜、可调谐滤波器、激光增益介质、石英音叉、后腔镜;所述石英音叉产生的压电信号经阻抗放大器放大后传输至控制与数据采集系统,所述控制与数据采集系统用于检测石英音叉的共振频率,并且实时控制所述斩波器,使之调制的频率f始终为石英音叉的共振频率f0;计算机连接所述控制与数据采集系统,通过上位机软件Labview进行实时控制。本装置能够快速检测出大气环境中存在多种痕量气体。
-
公开(公告)号:CN110957631B
公开(公告)日:2024-05-31
申请号:CN201911344608.5
申请日:2019-12-24
Applicant: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC: H01S3/131
Abstract: 本发明公开了一种激光稳定性控制方法,所述方法由以下步骤实现:步骤一、第一形态脉冲串激光经过偏振分光棱镜入射到激光谐振腔中进行振荡传播,所述第一形态脉冲串激光经过光电调节器件、1/4波片和第一平面镜以及温度控制单元,激光光学偏振态变为第一形态脉冲串激光,经过所述光电调节器件的调节可以形成振荡光路;步骤二、当所述振荡激光振荡到一定阈值次数时,开启LD泵浦激光,使谐振腔内的晶体产生脉冲激光;步骤三、当脉冲串激光获得了足够大的增益,关闭光电调节器件,开启温度控制单元,使其保持在指定温度下,当激光在所述温度控制单元中反复震荡到一定次数时,形成稳定的激光输出。本发明的优点在于稳定激光输出。
-
公开(公告)号:CN114518342A
公开(公告)日:2022-05-20
申请号:CN202210158218.4
申请日:2022-02-21
Applicant: 哈尔滨工业大学
Abstract: 一种薄膜偏振片透过率的检测装置,属于激光技术领域,具体方案如下:一种薄膜偏振片透过率的检测装置,包括测试光源、偏振立方体、旋转台、安装座、凸透镜和功率计,安装座固定设置在旋转台上且两者中心重合,待测薄膜偏振片设置在安装座上且两者中心重合,测试光源发出的光线穿过偏振立方体,入射至待测薄膜偏振片的中心,经待测薄膜偏振片反射至凸透镜的中心,然后到达功率计,凸透镜的中心与旋转台的中心的距离和凸透镜的中心与功率计之间的距离均为2f。本检测装置可保证在布儒斯特角附近旋转薄膜偏振片时,反射光会始终稳定地入射到功率计探头中心,避免测试过程中功率计位置反复移动带来的测试误差,进而保证测量准确。
-
公开(公告)号:CN112563865B
公开(公告)日:2021-11-09
申请号:CN202011459953.6
申请日:2020-12-11
Applicant: 哈尔滨工业大学
Abstract: 一种激光器离线调试装置及调试方法,属于激光器调试技术领域。两组调试机构镜像设置,激光器发射的激光经第一反射镜、第二反射镜后平行反射至谐振腔镜,谐振腔镜的反射光经第三反射镜反射后进入CCD相机的中心,CCD相机的信号输出端与电脑连接。在谐振腔镜位置处安装辅助镜片;调试激光器的谐振腔获得最佳输出;依次摆放各部件;调整第一反射镜、第二反射镜、第三反射镜位置和角度;调整小孔光阑的位置;将CCD相机连接到电脑上,在电脑上记录两组光斑位置;取下辅助镜片,放置谐振腔镜后调节角度,使反射光成像到上述光斑位置。本发明解决了军用激光器谐振腔镜片难以最佳化调试的缺点,调试方便且节省了调试时间,调试精度更高。
-
公开(公告)号:CN110994343B
公开(公告)日:2021-01-08
申请号:CN201911344088.8
申请日:2019-12-24
Applicant: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
Abstract: 本发明公开了一种具有双棱镜调整架的光学谐振腔及其光路调整方法,包括:光学谐振腔(1),包括固定的两个腔镜,其中一个作为反射镜,另一个作为输出镜(12),两个腔镜均用胶固定于侧面的镜架上;双棱镜调整架,位于光学谐振腔中,用于调节光学谐振腔中的光路;所述双棱镜调整架包括两个独立同轴旋转的楔形棱镜,所述楔形棱镜(21)中心与所述两个腔镜中心在同一条水平直线上,所述两个腔镜镜面平行并垂直于光轴,所述两楔形棱镜均可360°独立旋转,可使光束在一定锥形角度范围内可调。双棱镜调整架的稳定性更好,抗震效果更好,并且由于调节的方式不同,能够更为精细的调节光路。主要用于提高激光器的稳定性并使得激光器光路能够精细调节。
-
-
-
-
-
-
-
-
-