一种基于深度神经网络的争议焦点识别方法

    公开(公告)号:CN113553856A

    公开(公告)日:2021-10-26

    申请号:CN202110665262.X

    申请日:2021-06-16

    Applicant: 吉林大学

    Abstract: 本发明涉及一种基于深度神经网络的争议焦点识别方法,包括步骤:获取大量的裁判文书,并使用正则表达式方法对裁判文书进行初步清洗,提取其中原告诉称及被告辩称表述,由法学专家进行成对表述的争议焦点类别标注,完成争议焦点库的构建;利用争议焦点库对基于深度神经网络的模型进行句子级与段落级的训练,得到争议焦点识别器;将待识别的诉辩双方成对表述经过预处理后作为输入,传入步骤二训练得到的争议焦点识别器中,争议焦点识别器输出争议焦点所属类别。本发明方法的流程可以通过机器自动学习完成,节省人工开支;识别准确率得到提升;能更好的进行争议焦点识别,为法官、检察官及其他司法人员快速、准确分析案件的关键信息提供支持。

    一种药用真菌近红外光谱分析方法

    公开(公告)号:CN109883990A

    公开(公告)日:2019-06-14

    申请号:CN201910148749.3

    申请日:2019-02-28

    Applicant: 吉林大学

    Abstract: 本发明提供一种药用真菌近红外光谱分析方法,针对原始光谱数据进行完全自主的光谱预处理和特征波段提取的近红外光谱分析(ABRN),通过Attention模块实现对原始光谱进行增强特征波段,减弱噪声波段的自动预处理,然后使用残差神经网络对经Attention模块处理后的光谱数据进行特征提取和最终的含量预测。解决了在原始近红外光谱数据中大量噪声波段影响对特征波段选取准确性的问题,以及需要依赖专家经验进行人为的特征预处理而造成的一些微小特征的丢失,本发明针对原始近红外光谱无需人为干预,实现对原始近红外光谱中特征波段的自动提取以及活性成分含量的预测。

    一种基于深度神经网络的争议焦点识别方法

    公开(公告)号:CN113553856B

    公开(公告)日:2022-08-26

    申请号:CN202110665262.X

    申请日:2021-06-16

    Applicant: 吉林大学

    Abstract: 本发明涉及一种基于深度神经网络的争议焦点识别方法,包括步骤:获取大量的裁判文书,并使用正则表达式方法对裁判文书进行初步清洗,提取其中原告诉称及被告辩称表述,由法学专家进行成对表述的争议焦点类别标注,完成争议焦点库的构建;利用争议焦点库对基于深度神经网络的模型进行句子级与段落级的训练,得到争议焦点识别器;将待识别的诉辩双方成对表述经过预处理后作为输入,传入步骤二训练得到的争议焦点识别器中,争议焦点识别器输出争议焦点所属类别。本发明方法的流程可以通过机器自动学习完成,节省人工开支;识别准确率得到提升;能更好的进行争议焦点识别,为法官、检察官及其他司法人员快速、准确分析案件的关键信息提供支持。

    一种药用真菌近红外光谱分析方法

    公开(公告)号:CN109883990B

    公开(公告)日:2021-07-06

    申请号:CN201910148749.3

    申请日:2019-02-28

    Applicant: 吉林大学

    Abstract: 本发明提供一种药用真菌近红外光谱分析方法,针对原始光谱数据进行完全自主的光谱预处理和特征波段提取的近红外光谱分析(ABRN),通过Attention模块实现对原始光谱进行增强特征波段,减弱噪声波段的自动预处理,然后使用残差神经网络对经Attention模块处理后的光谱数据进行特征提取和最终的含量预测。解决了在原始近红外光谱数据中大量噪声波段影响对特征波段选取准确性的问题,以及需要依赖专家经验进行人为的特征预处理而造成的一些微小特征的丢失,本发明针对原始近红外光谱无需人为干预,实现对原始近红外光谱中特征波段的自动提取以及活性成分含量的预测。

Patent Agency Ranking