一种基于多分类的文本检测方法及系统

    公开(公告)号:CN115620327A

    公开(公告)日:2023-01-17

    申请号:CN202211321333.5

    申请日:2022-10-26

    Abstract: 本申请提出了一种基于多分类的文本检测方法以系统,包括:获取并整理文本框样本,将文本框样本切分成文本单元,对文本单元的坐标和标志位进行标注;将文本框样本按比例生成训练集和验证集,并且对文本单元的标志位赋类标;构建文本单元检测网络模型,通过文本单元检测网络模型对训练集进行训练至损失收敛,获取完成训练的模型输出,输出为集合B;构建文本单元合并算法,根据标志位的类标划分集合B,形成多个子集,根据当前元素和当前元素所属子集内的元素计算获取点集cnt外接矩形;将验证集输入完成训练的模型中,最终获得所有的文本框。能够有效解决自然场景下文本定位不准确、漏检、误检等多种问题,同时能够处理多角度的文本检测问题。

    一种基于多模态数据的社交关系分析方法、系统和存储介质

    公开(公告)号:CN115293920A

    公开(公告)日:2022-11-04

    申请号:CN202210971424.7

    申请日:2022-08-12

    Abstract: 本发明提出一种基于多模态数据的社交关系分析方法,包括:S1,提取人员的社交文本和社交图像信息,分别转换为文本特征和图像特征,并统计人员亲密度,基于人员亲密度构建人员社交网络图;S2,将文本特征和图像特征输入基于transformer的多模态融合模型,获得融合特征;S3,采用Si‑SCAN图聚类算法对人员社交网络图进行分析,获得社交关系聚类结果,其中,Si‑SCAN图聚类算法通过在SCAN算法基础上引入人员亲密度和融合特征信息构建。本发明基于文本、图像两个模态的信息对社交关系进行深入分析,通过多模态信息融合模型的设计,学习跨模态间的交互关系,生成多模态融合的图节点嵌入表征。通过图聚类分析,实现对社交网络的深层关系分析,能够有效发现潜在的社交关联。

    一种基于多阶注意力机制融合的人脸属性识别算法及系统

    公开(公告)号:CN115311719A

    公开(公告)日:2022-11-08

    申请号:CN202210964078.X

    申请日:2022-08-11

    Abstract: 本发明提出了一种基于多阶注意力机制融合的人脸属性识别算法,该算法包括:响应于人脸检测方法和人脸对齐方法,获取图像中的完整人脸区域,并输出人脸图像;将获取的人脸图像输入至卷积神经网络模型中,进一步提取该人脸图像的若干图像特征进行训练并处理;以及同时将获取的人脸图像的图像特征输入至多阶注意力机制融合网络模型中进行训练和处理;完成对该人脸图像的属性识别。通过在卷积神经网络的基础上引入了多阶注意力机制融合网络,利用Transformer构建全局特性信息的能力,学习图像所有的面部属性信息,利用卷积神经网络强大的特征信息提取能力和多阶注意力机制融合网络建模全局特性信息的能力,提升了算法对面部多种属性的识别能力。

Patent Agency Ranking