一种基于重编码的文本识别模型压缩方法及系统

    公开(公告)号:CN116029366A

    公开(公告)日:2023-04-28

    申请号:CN202211692290.1

    申请日:2022-12-28

    Abstract: 本发明提出了一种基于重编码的文本识别模型压缩方法及系统,该方法包括以下步骤:S1、获取并整理原始样本,使用原始样本对第一文本识别模型进行训练;S2、对训练好的第一文本识别模型进行知识蒸馏,获得压缩后的第二文本识别模型;S3、保留第二文本识别模型的主干网络,重新搭建第二文本识别模型的分类层,获得第三文本识别模型;以及S4、对原始样本进行重新标注处理,获得待测样本,使用待测样本对第三文本识别模型进行训练,并且对训练好的第三文本识别模型进行网络性能验证。该方法能够对大字库模型进行充分压缩,避免对模型识别精度带来明显影响,提升模型推理速度,减小模型规模,使模型充分满足实际业务场景需求。

    一种基于多分类的文本检测方法及系统

    公开(公告)号:CN115620327A

    公开(公告)日:2023-01-17

    申请号:CN202211321333.5

    申请日:2022-10-26

    Abstract: 本申请提出了一种基于多分类的文本检测方法以系统,包括:获取并整理文本框样本,将文本框样本切分成文本单元,对文本单元的坐标和标志位进行标注;将文本框样本按比例生成训练集和验证集,并且对文本单元的标志位赋类标;构建文本单元检测网络模型,通过文本单元检测网络模型对训练集进行训练至损失收敛,获取完成训练的模型输出,输出为集合B;构建文本单元合并算法,根据标志位的类标划分集合B,形成多个子集,根据当前元素和当前元素所属子集内的元素计算获取点集cnt外接矩形;将验证集输入完成训练的模型中,最终获得所有的文本框。能够有效解决自然场景下文本定位不准确、漏检、误检等多种问题,同时能够处理多角度的文本检测问题。

    基于对抗网络的深度神经网络对抗攻击防御的方法和系统

    公开(公告)号:CN117195222A

    公开(公告)日:2023-12-08

    申请号:CN202310959070.9

    申请日:2023-08-01

    Abstract: 公开了基于对抗网络的深度神经网络对抗攻击防御的方法和系统,包括搭建深度神经网络随机对抗攻击模块,深度神经网络随机对抗攻击模块包括多个并联的对抗攻击算法,随机对输入图像进行对抗攻击加噪;搭建可微分频域正则化器,可微分频域正则化器对频域信息对模型输出进行正则化处理;搭建对抗防御网络架构,对抗防御网络以基于编码解码结构的生成对抗网络作为主干网络,并引入深度神经网络随机对抗攻击模块和可微分频域正则化器;收集自然场景下的图像,按比例形成训练集和验证集,使用训练集对对抗防御网络进行训练至损失收敛。本申请能够明显提升深度神经网络对抗攻击防御能力,对多种对抗攻击方式均有良好的泛化性能。

    一种同源图像检索方法和系统
    8.
    发明公开

    公开(公告)号:CN117112823A

    公开(公告)日:2023-11-24

    申请号:CN202310929283.7

    申请日:2023-07-27

    Abstract: 公开了一种同源图像检索方法和系统,包括将教师网络和学生网络分别分为多个模块,将浅层特征提取模块和深层特征提取模块分别进行损失的约束和知识的蒸馏;在浅层特征上将所述教师网络训练输出的伪标签作为所述学生网络在浅层特征学习后输出的标签,计算软分类交叉熵损失;对深层特征的教师网络和学生网络编码输出进行相似度计算,在总损失函数中加上所述教师网络和所述学生网络的硬分类交叉熵损失,完成启发式的网络轻量化训练。本申请通过学生网络对教师网络的启发式学习,并同时考虑标签层面与特征层面的模型表征能力,约束了深浅不同层次的模型特征学习能力,使学生网络能够取得不低于教师网络的图像表征能力,实现了模型的轻量化。

Patent Agency Ranking