-
公开(公告)号:CN115408495A
公开(公告)日:2022-11-29
申请号:CN202211023077.1
申请日:2022-08-25
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06F16/33 , G06F16/35 , G06F16/9536 , G06F40/247 , G06F40/284 , G06F40/289 , G06K9/62 , G06N3/04 , G06N3/08 , G06Q50/00
Abstract: 本申请提出了一种基于多模态检索和关键词提取的社交文本增强方法,包括:S1、利用类别关键词抽取算法提取不同类别样本语句中的关键词;S2、采用RNN模型结合自注意力机制的方式,利用训练样本训练得到句子的生成模型,并根据所述训练样本对应类别的关键词控制所述生成模型的句子生成方向;S3、将原始语句输入到所述生成模型中,生成文本增强的第一生成语句;S4、基于多模态检索算法,判断所述第一生成语句是否存在所述关键词文件中的关键词,若是,则在所述第一生成语句中找出需要替换的关键词,并检索出所述需要替换的关键词的近义词进行替换,从而生成多个数据增强的第二生成语句。本申请具有能够对生成模型的生成方向、生成数量进行控制的效果。
-
公开(公告)号:CN115620327A
公开(公告)日:2023-01-17
申请号:CN202211321333.5
申请日:2022-10-26
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V30/413 , G06V30/19 , G06V10/82
Abstract: 本申请提出了一种基于多分类的文本检测方法以系统,包括:获取并整理文本框样本,将文本框样本切分成文本单元,对文本单元的坐标和标志位进行标注;将文本框样本按比例生成训练集和验证集,并且对文本单元的标志位赋类标;构建文本单元检测网络模型,通过文本单元检测网络模型对训练集进行训练至损失收敛,获取完成训练的模型输出,输出为集合B;构建文本单元合并算法,根据标志位的类标划分集合B,形成多个子集,根据当前元素和当前元素所属子集内的元素计算获取点集cnt外接矩形;将验证集输入完成训练的模型中,最终获得所有的文本框。能够有效解决自然场景下文本定位不准确、漏检、误检等多种问题,同时能够处理多角度的文本检测问题。
-
公开(公告)号:CN115424036A
公开(公告)日:2022-12-02
申请号:CN202211153622.9
申请日:2022-09-21
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06V10/44 , G06N3/04 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 公开了基于像素级注意力机制的深度伪造图像检测方法和系统,包括在图像检测的主干网络中的提取特征之后插入像素级注意力机制模块,利用一个1*1卷积对特征信息Fi进行通道压缩,压缩通道并将降维后的特征和原始图像相加得到特征Fii;将特征Fii再经过一个1*1卷积和Sigmoid激活函数得到增强后的特征信息;将增强后的特征信息作为下一特征提取阶段的输入,重复进行前述步骤进行特征信息增强,并利用标签平滑正则化的交叉嫡损失函数进行约束。本发明提出的像素级注意力机制模块较为灵活,可以随意插入不同卷积层之后,而且在推理过程中不会增加太多参数量和运算量。
-
公开(公告)号:CN114239747A
公开(公告)日:2022-03-25
申请号:CN202111581957.6
申请日:2021-12-22
Applicant: 厦门市美亚柏科信息股份有限公司
IPC: G06K9/62
Abstract: 本申请提出了一种基于检验统计量的高维数据流变点检验方法及系统,包括:利用WBS2将高维数据流随机分成若干个完整的数据子集;计算数据子集区间的检验统计量值Lt,输出最大检验统计量值的数据点位置,将数据点作为候选点添加至变点候选集中;利用候选点将数据子集一分为二,在候选点的左右两侧再次递归抽取数据子集;重复上述步骤,直到数据子集的长度达到最小长度阈值;计算每个候选点对应的检验统计量值的累加和V,将累加和V除以标准差所得的商V/sv与检验阈值Zα比较;若所得的商V/sv大于检验阈值Zα,则认定该候选点为变点,输出变点的个数和位置。结合了高维数据流的时空依赖性,能够检验和估计位于时间序列边界上的变点,准确率和鲁棒性更高且速度更快。
-
公开(公告)号:CN115578714A
公开(公告)日:2023-01-06
申请号:CN202211183158.8
申请日:2022-09-27
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 公开了一种基于浅层特征信息增强的车辆颜色识别方法和系统,包括在车辆颜色识别的卷积神经网络中嵌入浅层特征信息增强模块,卷积神经网络包括浅层卷积块、中层卷积块和高层卷积块,浅层特征信息增强模块嵌入浅层卷积块和中层卷积块之后;车辆图片作为浅层卷积块的输入依次进行特征提取,浅层特征信息增强模块接收特征输入,经过多个1*1卷积层获得不同维度的特征,对不同维度的特征进行矩阵相乘获得增强信息表达的特征,送入下一卷积块;将各卷积块的特征依次送入全局平均池化层、对应的分类层进行分类,并利用标签平滑正则化的交叉熵损失函数进行约束。浅层特征信息增强模块可灵活的插入卷积神经网络任意位置,增强特征信息,增加模型的泛化性。
-
公开(公告)号:CN115546907A
公开(公告)日:2022-12-30
申请号:CN202211153579.6
申请日:2022-09-21
Applicant: 厦门市美亚柏科信息股份有限公司
Abstract: 公开了多尺度特征聚合的活体检测方法和系统,包括将RGB图像通过图像变换转换为HSV图像,将RGB图像和HSV图像融合为RGB‑HSV图像并送入主干网络;将主干网络提取的特征送入特征深度拓展模块,并将输出送入多特征提取模块以获得更多的上下文信息;将最终输出经过池化层和分类层,并在交叉熵损失函数的约束下进行训练。本发明提出的一种多尺度特征聚合的活体检测方法和系统,其具有参数量小、对图像的接受域大、多尺度特征聚合的特点,利用了空洞卷积以扩大网络的感受野,获取更多的上下文信息,利用RGB图像和HSV图像作为6通道的图像作为输入,运行速度与仅使用RGB图像的运行速度是一致的,在性能和效率之间取得了很好的平衡。
-
-
-
-
-