-
公开(公告)号:CN117353286A
公开(公告)日:2024-01-05
申请号:CN202311252281.5
申请日:2023-09-26
Applicant: 南昌大学
Abstract: 一种基于多个相似日和堆叠学习的短期负荷预测方法,1)利用滑动窗口算法对具有高度非线性和非平稳性的时间序列电力负荷数据进行处理;2)提出了一种堆叠神经网络的集成学习方法,在预训练过程中,基层网络集成了径向基函数、随机向量函数链接和反向传播神经网络,以提供稳健的预测模型,元层网络利用深度信念网络和改进的广义学习系统来提高预测精度;3)提出了相似日预测方法来提取电力负荷数据在不同时间维度上的相似特征,进一步增强了模型的稳健性和准确性。本发明通过使用三种策略:滑动窗口算法、堆叠算法、相似日预测方法,有效的提取历史负荷数据的时空特征,减少了计算量,有效提高了模型预测精度,增强了预测模型稳健性和准确性。
-
公开(公告)号:CN117351248A
公开(公告)日:2024-01-05
申请号:CN202311246781.8
申请日:2023-09-26
Applicant: 南昌大学
Inventor: 李春泉 , 汪芊芊 , 郑波钰 , 岳冲 , 陈昌祺 , 廖志远 , 程宇新 , 邓觐铧 , 高宇凡 , 陈利民 , 伍军云 , 林嘉 , 陈荣伶 , 范静辉 , 任康 , 喻俊志
Abstract: 一种基于神经动力学的图像双时间变尺度优化聚类方法,包括:(1)构建稀疏图对偶正则化非负矩阵分解模型;(2)提出了一种新的双时间变尺度双神经动力学优化(TTDNO)方法进行非负矩阵分解;(3)进行聚类,给出两个评估指标来衡量算法的聚类性能。本发明优点:1、稀疏图对偶正则化非负矩阵分解,将两个分解矩阵的L0范数引入DNMF的目标函数中,使用反高斯函数来近似L0范数,避免问题NP‑hard且不连续,并且在保证分解矩阵的高稀疏性的前提下,方便后续的优化步骤;2、将神经动力学优化方法TTDNO引入到稀疏图对偶正则化非负矩阵分解模型的求解问题中,提升了收敛速度,并在图像聚类任务中表现出更好的聚类性能。
-
公开(公告)号:CN222285483U
公开(公告)日:2025-01-03
申请号:CN202322976948.8
申请日:2023-11-04
Applicant: 南昌大学
Abstract: 一种基于人机交互的一体式脑电采集系统,包括信号采集电路、防静电隔离电路、前置滤波电路、ADS1299芯片、微控制器和通信模块,信号采集电极经防静电隔离电路、前置滤波电路连接ADS1299芯片,ADS1299芯片经SPI通信总线连接微控制器,微控制器采用STM32F405RGT6,微控制器内部集成5阶IIR带通滤波模块和陷波滤波模块,微控制器上接有通信模块,微控制器通过串口或USB模块与上位机进行有线通信,也可通过ESP32模块与上位机无线通信。本实用新型获取的脑电信号质量高,抗干扰性能好,并具有成本低、体积小、噪声低、功耗低等特性,可实现长时间连续高精度采集脑电信号,适合在人机交互领域普及。
-
-