-
公开(公告)号:CN113627871B
公开(公告)日:2023-08-18
申请号:CN202110690513.X
申请日:2021-06-22
Applicant: 南京邮电大学
IPC: G06Q10/10 , G06Q10/0631 , G06Q10/0637 , G06Q10/0633 , G06F17/11 , G06N3/006
Abstract: 本发明公开了一种基于多目标粒子群算法的工作流调度方法、系统及存储介质,所述方法首先考虑集群内各服务器的降频特性和执行时间的差异性,在传统模型基础上构建了一个涵盖工作流执行开销、执行时间、集群负载均衡的多目标综合评估模型;其次,面向工作流调度提出了一种多目标粒子群算法,并给出了一种高效求解方法。此方法缓解了粒子群算法的过早收敛、物种多样性低的缺陷,降低了工作流在集群服务器上的执行开销、执行时间,较好的平衡了集群服务器的负载。
-
公开(公告)号:CN111736989B
公开(公告)日:2022-10-14
申请号:CN202010506445.2
申请日:2020-06-05
Applicant: 南京邮电大学
IPC: G06F9/50
Abstract: 本发明公开一种多模式分布式集群GPU指标检测方法及系统,包括GPU嗅探器读取工作节点环境变量中的模式值和计时器频率,读取工作节点的GPU数量和GPU信息参数,计算出自身不同工作模式下工作节点的GPU性能得分,进行信息上报;存储器比对上报信息和数据平面的数据库,使数据库对应数据内部的各个字段更新为上报信息内部的各个字段;校验器等待接收并校验上报信息。本发明通过工作节点设置GPU信息列表缓存和数据平面设置字段对比来实现GPU信息更新从而降低信息上报频率、减少信息传输成本;通过多模式评分策略凸显GPU资源的多样性,以适配更多复杂场景的GPU计算需求。
-
公开(公告)号:CN113627871A
公开(公告)日:2021-11-09
申请号:CN202110690513.X
申请日:2021-06-22
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于多目标粒子群算法的工作流调度方法、系统及存储介质,所述方法首先考虑集群内各服务器的降频特性和执行时间的差异性,在传统模型基础上构建了一个涵盖工作流执行开销、执行时间、集群负载均衡的多目标综合评估模型;其次,面向工作流调度提出了一种多目标粒子群算法,并给出了一种高效求解方法。此方法缓解了粒子群算法的过早收敛、物种多样性低的缺陷,降低了工作流在集群服务器上的执行开销、执行时间,较好的平衡了集群服务器的负载。
-
公开(公告)号:CN111736989A
公开(公告)日:2020-10-02
申请号:CN202010506445.2
申请日:2020-06-05
Applicant: 南京邮电大学
IPC: G06F9/50
Abstract: 本发明公开一种多模式分布式集群GPU指标检测方法及系统,包括GPU嗅探器读取工作节点环境变量中的模式值和计时器频率,读取工作节点的GPU数量和GPU信息参数,计算出自身不同工作模式下工作节点的GPU性能得分,进行信息上报;存储器比对上报信息和数据平面的数据库,使数据库对应数据内部的各个字段更新为上报信息内部的各个字段;校验器等待接收并校验上报信息。本发明通过工作节点设置GPU信息列表缓存和数据平面设置字段对比来实现GPU信息更新从而降低信息上报频率、减少信息传输成本;通过多模式评分策略凸显GPU资源的多样性,以适配更多复杂场景的GPU计算需求。
-
-
-