一种基于建筑物轮廓约束的航空与地面LiDAR数据自动配准方法

    公开(公告)号:CN103020966B

    公开(公告)日:2015-08-26

    申请号:CN201210512359.8

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 一种基于建筑物轮廓约束的航空与地面LiDAR数据自动配准方法:首先分别从航空、地面LiDAR数据中提取建筑物轮廓,简称航空轮廓、地面轮廓;再从航空轮廓、地面轮廓中提取出建筑物角点,简称航空角点、地面角点;然后以航空轮廓与地面轮廓间的匹配度为约束,计算航空角点与地面角点之间初始转换矩阵,并获取初始匹配角点对;最后使用ICP算法计算初始匹配角点对之间的修正转换矩阵,并用初始转换矩阵和修正转换矩阵依次对待匹配地面点云数据进行转换,实现航空与地面LiDAR数据的自动高精度配准。本发明使用轮廓线做约束,在配准的可靠性与精确性方面都有很大的优势;同时,本发明仅从待匹配LiDAR数据与基准LiDAR数据出发,无需借助其他辅助数据便可实现两者之间的精确配准。

    基于多分辨率遥感影像离散点融合的DEM构建方法

    公开(公告)号:CN102496185B

    公开(公告)日:2013-09-25

    申请号:CN201110417845.7

    申请日:2011-12-14

    Applicant: 南京大学

    Abstract: 本发明公开了基于多分辨率遥感影像离散点融合的DEM构建方法,属于DEM构建领域。其步骤为:(1)将卫星成像时刻的水边线根据其遥感影像分辨率进行等间隔离散;(2)分别合并离散的等距潮位点,根据低空间分辨率遥感影像分辨率构建参考格网;(3)遍历低空间分辨率影像中的所有格网进行中值滤波;(4)以对应格网内中值滤波后的低空间分辨率影像离散点进行填充,最后在ArcGIS中实现融合;(5)利用线性内插构建最终的DEM结果。本发明提高了现有中低分辨率遥感影像离散点DEM构建的正确率,同时也提高了DEM构建的时间空间分辨率,能够快速、准确地从多期水边线数据中构建精确的DEM,降低了基础地理信息数据库的更新成本,提高了数据更新的效率。

    一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法

    公开(公告)号:CN103065295A

    公开(公告)日:2013-04-24

    申请号:CN201210510785.8

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法,首先从航空LiDAR数据提取建筑物角点(称为航空角点);再从地面LiDAR数据提取建筑物角点(称为地面角点);然后对航空角点与地面角点进行初始匹配,分别从航空角点和地面角点中选取任意两个点计算用于坐标变换的转换矩阵,对所有转换矩阵根据最大匹配对数和最小匹配误差确定最优转换矩阵;最后在确定初始匹配角点对基础上,以地面角点为参考,对航空LiDAR角点进行位置修正,最终实现航空LiDAR数据与地面LiDAR数据的自动配准。本发明可修正航空LiDAR角点中误差较大的点,较大地提高了航空LiDAR数据和地面LiDAR数据的配准精度。

    一种基于中值滤波的中分辨率遥感影像离散点DEM构建方法

    公开(公告)号:CN102436679B

    公开(公告)日:2014-04-30

    申请号:CN201110423561.9

    申请日:2011-12-16

    Applicant: 南京大学

    Abstract: 本发明属于中分辨率遥感影像离散点DEM构建方法领域,公开了一种基于中值滤波的中分辨率遥感影像离散点DEM构建方法。它包括以下步骤:步骤1:计算卫星成像时刻潮高信息;步骤2:离散卫星成像时刻提取的矢量水边线,步骤3:合并上述步骤离散的等距潮位点,根据遥感影像分辨率构建中值滤波的参考格网,并对所有离散的等距潮位点进行标号,标明其所属格网ID;步骤4:遍历所有格网;步骤5:在中值滤波结果的基础上利用线性内插构建最终的DEM结果。本发明的方法通过中值滤波的方法有效地利用了落在格网内所有离散点的高程信息,提高了离散点高程精度。

    一种利用多时相雷达数据检测海上静止目标的方法

    公开(公告)号:CN102768356B

    公开(公告)日:2013-08-28

    申请号:CN201210275677.7

    申请日:2012-08-03

    Applicant: 南京大学

    Abstract: 本发明涉及一种利用多时相雷达数据检测海上静止目标的方法。该方法使用的数据为多时相的ENVISATASAR影像,首先对于多景ENVISATASAR数据使用基于双参数的恒虚警率(CFAR)算法提取海上目标,针对ENVISATASAR数据提出了优选的算法参数,使得双参数CFAR适用于ENVISATASAR数据。对于多时相的海上目标,使用一种基于RANSAC算法的海上目标点匹配方法进行匹配,经匹配后的点目标中相互重合的点就为海上静止目标。该方法能够有效地检测海上钻井平台等海上静止目标,从而快速、及时、准确地监测海域石油开发等资源和环境状况。

    一种基于LiDAR数据的建筑物区域提取方法

    公开(公告)号:CN102520401B

    公开(公告)日:2013-05-08

    申请号:CN201110432421.8

    申请日:2011-12-21

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于LiDAR数据的建筑物区域提取方法,属于LiDAR数据提取建筑物的方法领域。其步骤包括:LiDAR数据前期处理;对原始LiDAR数据重采样;反向迭代数学形态学滤波;分离建筑物与密集树木。本发明直接对3D点云数据进行处理,而不是将点云转化为深度图像,避免了转化过程中信息的损失和转化过程中增加的计算量;同时通过反向渐进迭代使用不同窗口进行数学形态学滤波操作,基本消除了地形起伏对数学形态学滤波中建筑物提取的影响,能取得较高的提取精度;本发明能够从大范围的LiDAR数据中快速、准确地提取出属于建筑物区域的LiDAR点,能够为城市的三维建模提供可靠的数据支持。

    一种从地面LiDAR数据中提取建筑物轮廓和角点的方法

    公开(公告)号:CN103020342A

    公开(公告)日:2013-04-03

    申请号:CN201210512462.2

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 本发明涉及一种从地面LiDAR数据中提取建筑物轮廓和角点的方法,首先使用分层次的格网密度方法从地面LiDAR数据中提取建筑物轮廓;在此基础上使用轮廓延伸密度方法对提取的建筑物轮廓进行恢复,即得到完整的建筑物轮廓;若需提取角点则将完整的建筑物轮廓投影到三维坐标系的XY平面内寻找二维相交点,如果任两条构成相交点的轮廓的高程差小于1m,则判定两条轮廓在实际的三维空间中相交,两条轮廓的相交点为一个地面角点,并将所述两条轮廓的高程均值作为该地面角点的高程。本发明所用的格网密度方法、格网密度阈值的理论估计确定方法、轮廓密度延伸的方法,保证了从地面LiDAR数据中提取准确的建筑物轮廓线段和高精度的地面角点;并且实现了自动化提取,大大提高了数据处理效率。

    一种基于车载LiDAR数据的电力线提取与拟合方法

    公开(公告)号:CN103473734B

    公开(公告)日:2016-09-14

    申请号:CN201310421449.0

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 基于车载LiDAR数据的电力线提取与拟合方法,方法如下:首先利用体元划分车载LiDAR点云,确定各个体元内的点;然后根据真实电力线的分布特点剔除不含有电力线点云的体元;再将过滤得到的电力线点云依据电力线走廊进行划分,并利用AutoClust算法对电力线点云进行初始聚类;接着使用基于端部拟合线段的聚类合并方法,将属于同一电力线的初始点云聚类合并到一起;最后根据电力线的特性,恢复断裂的电力线,最终得到可用以表征单条电力线的点云,并以此进行三维拟合。本发明能够实现海量车载LiDAR数据中电力线点云的自动快速提取,实现了单条电力线的准确识别以及电力线三维模型的精确拟合。

    一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法

    公开(公告)号:CN103065295B

    公开(公告)日:2016-01-20

    申请号:CN201210510785.8

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法,首先从航空LiDAR数据提取建筑物角点(称为航空角点);再从地面LiDAR数据提取建筑物角点(称为地面角点);然后对航空角点与地面角点进行初始匹配,分别从航空角点和地面角点中选取任意两个点计算用于坐标变换的转换矩阵,对所有转换矩阵根据最大匹配对数和最小匹配误差确定最优转换矩阵;最后在确定初始匹配角点对基础上,以地面角点为参考,对航空LiDAR角点进行位置修正,最终实现航空LiDAR数据与地面LiDAR数据的自动配准。本发明可修正航空LiDAR角点中误差较大的点,较大地提高了航空LiDAR数据和地面LiDAR数据的配准精度。

    集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法

    公开(公告)号:CN102855609B

    公开(公告)日:2014-10-01

    申请号:CN201210268170.9

    申请日:2012-07-30

    Applicant: 南京大学

    Abstract: 本发明涉及一种集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法,属于水下地形勘测技术领域。本发明首先借助声纳数据的聚类中心点对高光谱遥感影像进行降维,然后对降维后的低维遥感影像进行区域划分,最后在各区域内部对声纳数据进行插值得到水下地形。本发明将高光谱遥感影像与稀疏声纳数据进行了有机结合,在整个过程中,两种数据作为一种互补,很好地解决了水下地形构建的问题。经过几何校正的遥感影像和声纳数据都具备坐标信息,并且遥感影像的灰度与水深存在一定的模糊对应关系,因此划区后的遥感影像中,各水深均质区域内水深变换较小,声纳数据插值结果更真实。

Patent Agency Ranking