一种基于LiDAR数据与正射影像的3维屋顶重建方法

    公开(公告)号:CN102521884B

    公开(公告)日:2014-04-09

    申请号:CN201110423560.4

    申请日:2011-12-16

    Applicant: 南京大学

    Abstract: 本发明属于影像处理方法领域,公开了一种基于LiDAR数据与正射影像的3维屋顶重建方法。本方法包括以下步骤:(1)基于三角形簇的LiDAR点屋顶面片分割;(2)基于LiDAR数据与正射影像的屋脊线提取;(3)3维屋顶模型重建。本方法面向3维屋顶模型精细重建的需求,集成LiDAR数据与高分辨率影像,综合利用LiDAR数据高程特性与影像高分辨率特性的互补优势,以“屋顶面片分割-屋脊线提取-3维屋顶模型重建”为主线,实现了基于三角形簇的LiDAR点屋顶面片分割算法、基于LiDAR数据与正射影像的屋脊线提取算法,形成了一种3维屋顶模型重建的新方法,实验证明本方法建模的自动化程度高,正确性和完整性较高、定位精度较高,符合实际应用需求。

    一种利用多时相雷达数据检测海上静止目标的方法

    公开(公告)号:CN102768356A

    公开(公告)日:2012-11-07

    申请号:CN201210275677.7

    申请日:2012-08-03

    Applicant: 南京大学

    Abstract: 本发明涉及一种利用多时相雷达数据检测海上静止目标的方法。该方法使用的数据为多时相的ENVISATASAR影像,首先对于多景ENVISATASAR数据使用基于双参数的恒虚警率(CFAR)算法提取海上目标,针对ENVISATASAR数据提出了优选的算法参数,使得双参数CFAR适用于ENVISATASAR数据。对于多时相的海上目标,使用一种基于RANSAC算法的海上目标点匹配方法进行匹配,经匹配后的点目标中相互重合的点就为海上静止目标。该方法能够有效地检测海上钻井平台等海上静止目标,从而快速、及时、准确地监测海域石油开发等资源和环境状况。

    基于动态时间弯曲的时序SAR影像耕地提取方法

    公开(公告)号:CN104008552B

    公开(公告)日:2017-01-25

    申请号:CN201410266813.5

    申请日:2014-06-16

    Abstract: 本发明涉及一种基于动态时间弯曲的时序SAR影像耕地提取方法,步骤包括:构建时序SAR影像;提取耕地参考时间序列;计算待分类像元时间序列与耕地参考时间序列之间的动态时间弯曲距离;计算结果阈值分割,待分类像元归类为耕地与非耕地;分割结果空域滤波,滤除孤立的耕地像元,填补连片耕地之间的缝隙,得到耕地的最终提取结果。本发明考虑到耕地时间序列特有的“时间轴弯曲”现象,使用动态时间弯曲距离(DTW)作为相似性度量标准,从而实现耕地像元与非耕地像元的划分,解决了传统方法无法适应时间轴畸变的时间序列相似性度量这一问题,提高了耕地的提取精度。本发明方法适应性强,提取精度可达82%以上,能够满足实际生产的需要。

    基于像素级SAR影像时间序列相似性分析的水体提取方法

    公开(公告)号:CN103440489B

    公开(公告)日:2017-01-11

    申请号:CN201310423428.2

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 本发明涉及一种像素级SAR影像时间序列的水体提取方法,该方法首先,对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列,生成时间序列文本数据;其次,采样选取纯净水体像元和混合水体像元的时间序列,选取DTW作为时间序列的相似性度量,计算其DTW值作为最大阈值;然后计算所有像元的像素级SAR影像时间序列与纯净水体像元时间序列的DTW值,采用最大阈值方法分割SAR影像,获取二值图像;最后,采用8邻域搜索方法对二值图像进行操作以提高水体识别精度。该方法能够准确提取稳定的水资源分布范围,提取结果不受山体阴影、雨季积水及部分植被的影响,能够满足水体制图的要求。

    一种主方向约束下的停车场结构提取方法

    公开(公告)号:CN102968634B

    公开(公告)日:2016-08-03

    申请号:CN201210482430.2

    申请日:2012-11-23

    Applicant: 南京大学

    Abstract: 一种主方向约束下的停车场结构提取方法,步骤包括:针对航空正射影像,使用Edison算法和Hough变换进行初始线段检测,获取车位线主方向;根据获取的主方向,使用主方向约束下的线段提取方法,检测出准确车位线;根据车位线角度对车位线进行编组筛选,并使用最大相交方向方法划分停车道;利用提取的车位线和划分的停车道,计算停车场的结构参数;依据停车场结构参数重新构建停车场的准确车位线,并生成停车道的分割线,完成停车场结构的自动提取。本发明利用初始线段检测获取车位线的主方向,以此作为约束进行车位线提取,提取的车位线正确性、完整性和定位精度都较高,能够更好地为停车场结构的提取提供依据。本发明以单景航空正射影像为数据进行停车场结构提取,数据获取容易,价格适宜。

    一种基于LiDAR数据与正射影像的3维屋顶重建方法

    公开(公告)号:CN102521884A

    公开(公告)日:2012-06-27

    申请号:CN201110423560.4

    申请日:2011-12-16

    Applicant: 南京大学

    Abstract: 本发明属于影像处理方法领域,公开了一种基于LiDAR数据与正射影像的3维屋顶重建方法。本方法包括以下步骤:(1)基于三角形簇的LiDAR点屋顶面片分割;(2)基于LiDAR数据与正射影像的屋脊线提取;(3)3维屋顶模型重建。本方法面向3维屋顶模型精细重建的需求,集成LiDAR数据与高分辨率影像,综合利用LiDAR数据高程特性与影像高分辨率特性的互补优势,以“屋顶面片分割-屋脊线提取-3维屋顶模型重建”为主线,实现了基于三角形簇的LiDAR点屋顶面片分割算法、基于LiDAR数据与正射影像的屋脊线提取算法,形成了一种3维屋顶模型重建的新方法,实验证明本方法建模的自动化程度高,正确性和完整性较高、定位精度较高,符合实际应用需求。

    基于像素级SAR影像时间序列相似性分析的水体提取方法

    公开(公告)号:CN103440489A

    公开(公告)日:2013-12-11

    申请号:CN201310423428.2

    申请日:2013-09-16

    Applicant: 南京大学

    Abstract: 本发明涉及一种像素级SAR影像时间序列的水体提取方法,该方法首先,对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列,生成时间序列文本数据;其次,采样选取纯净水体像元和混合水体像元的时间序列,选取DTW作为时间序列的相似性度量,计算其DTW值作为最大阈值;然后计算所有像元的像素级SAR影像时间序列与纯净水体像元时间序列的DTW值,采用最大阈值方法分割SAR影像,获取二值图像;最后,采用8邻域搜索方法对二值图像进行操作以提高水体识别精度。该方法能够准确提取稳定的水资源分布范围,提取结果不受山体阴影、雨季积水及部分植被的影响,能够满足水体制图的要求。

    一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法

    公开(公告)号:CN103065295A

    公开(公告)日:2013-04-24

    申请号:CN201210510785.8

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法,首先从航空LiDAR数据提取建筑物角点(称为航空角点);再从地面LiDAR数据提取建筑物角点(称为地面角点);然后对航空角点与地面角点进行初始匹配,分别从航空角点和地面角点中选取任意两个点计算用于坐标变换的转换矩阵,对所有转换矩阵根据最大匹配对数和最小匹配误差确定最优转换矩阵;最后在确定初始匹配角点对基础上,以地面角点为参考,对航空LiDAR角点进行位置修正,最终实现航空LiDAR数据与地面LiDAR数据的自动配准。本发明可修正航空LiDAR角点中误差较大的点,较大地提高了航空LiDAR数据和地面LiDAR数据的配准精度。

    一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法

    公开(公告)号:CN103065295B

    公开(公告)日:2016-01-20

    申请号:CN201210510785.8

    申请日:2012-12-04

    Applicant: 南京大学

    Abstract: 一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法,首先从航空LiDAR数据提取建筑物角点(称为航空角点);再从地面LiDAR数据提取建筑物角点(称为地面角点);然后对航空角点与地面角点进行初始匹配,分别从航空角点和地面角点中选取任意两个点计算用于坐标变换的转换矩阵,对所有转换矩阵根据最大匹配对数和最小匹配误差确定最优转换矩阵;最后在确定初始匹配角点对基础上,以地面角点为参考,对航空LiDAR角点进行位置修正,最终实现航空LiDAR数据与地面LiDAR数据的自动配准。本发明可修正航空LiDAR角点中误差较大的点,较大地提高了航空LiDAR数据和地面LiDAR数据的配准精度。

    集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法

    公开(公告)号:CN102855609B

    公开(公告)日:2014-10-01

    申请号:CN201210268170.9

    申请日:2012-07-30

    Applicant: 南京大学

    Abstract: 本发明涉及一种集成高光谱数据和稀疏声纳数据的浅水水下地形构建方法,属于水下地形勘测技术领域。本发明首先借助声纳数据的聚类中心点对高光谱遥感影像进行降维,然后对降维后的低维遥感影像进行区域划分,最后在各区域内部对声纳数据进行插值得到水下地形。本发明将高光谱遥感影像与稀疏声纳数据进行了有机结合,在整个过程中,两种数据作为一种互补,很好地解决了水下地形构建的问题。经过几何校正的遥感影像和声纳数据都具备坐标信息,并且遥感影像的灰度与水深存在一定的模糊对应关系,因此划区后的遥感影像中,各水深均质区域内水深变换较小,声纳数据插值结果更真实。

Patent Agency Ranking