一种基于LA-UNET-LSTM的次季节降水预报方法

    公开(公告)号:CN118277767A

    公开(公告)日:2024-07-02

    申请号:CN202410614990.1

    申请日:2024-05-17

    Abstract: 本发明公开了一种基于LA‑UNET‑LSTM的次季节降水预报方法,包括:采集数值模式输出的降水和多气象要素预报数据、实际降水观测数据,并将数据划分成训练集、验证集和测试集;基于训练集数据提取降水可预报模态的特征序列,诊断分析其在数值模式中的可预报性来源,并提取特征掩膜场;搭建LA‑UNET‑LSTM神经网络,构建基于结构相似性和加权均方差的损失函数;对数据进行标准化处理,配合特征掩膜场构建预报因子特征图,基于训练集数据对模型展开训练,并根据模型验证集中表现调整模型参数;将测试集中的预报因子特征图带入训练好的模型,同时得到未来1‑4周的降水预报数据。本发明有效提高了计算效率和极端降水的预报技巧。

Patent Agency Ranking