一种基于多通道卷积神经网络的次季节台风生成预报方法

    公开(公告)号:CN115857062A

    公开(公告)日:2023-03-28

    申请号:CN202310174997.1

    申请日:2023-02-28

    Abstract: 本发明公开了一种基于多通道卷积神经网络的次季节台风生成预报方法,包括以下步骤:(1)统计台风逐周生成频次,对台风频次进行数据重组,提取不同时间尺度的周期性信号,并过滤多余的噪声;(2)基于信息流方法诊断各时间尺度周期性信号的可预测性来源构建掩膜场;(3)搭建多通道卷积神经网络模型,基于再分析资料构建的训练集对模型展开训练;(4)基于采集到的数值模型预报数据展开迁移学习,得到最终的预报模型;(5)将预设时间内的预报数据代入模型,生成次季节台风生成预报;本发明提升次季节台风生成预报技巧;有效滤除大尺度因子场中的多余噪音,进而有效提高模型预报效果。

Patent Agency Ranking