-
公开(公告)号:CN119128448B
公开(公告)日:2025-03-25
申请号:CN202411607038.5
申请日:2024-11-12
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G06F18/20 , G06F18/214 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了基于多源模态融合深度学习的高分辨雨情分析生成方法,方法包括:基于与雨情相关的多源数据集,得到多物理量数据集,并建立无量纲化的多模态特征因子库;对损失函数进行多维度非等权处理,构建多尺度空间转换模型MF‑ST‑Unet;模型训练后最终生成逐小时区域高分辨率雨情分析数据集;基于训练好的MF‑ST‑Unet模型,通过迁移学习知识蒸馏,得到应用于覆盖整体区域的高分辨率雨情分析数据集。本发明能够快速有效生成高空间分辨率的均匀网格雨情分析,且较传统方法更加客观、准确;充分考虑雨情的多尺度特征及降水量级的差异,实现高分辨率客观雨情数据获取,提高雨情检测能力和灾害防范精准性,具有极强的应用价值。
-
公开(公告)号:CN119128448A
公开(公告)日:2024-12-13
申请号:CN202411607038.5
申请日:2024-11-12
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G06F18/20 , G06F18/214 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了基于多源模态融合深度学习的高分辨雨情分析生成方法,方法包括:基于与雨情相关的多源数据集,得到多物理量数据集,并建立无量纲化的多模态特征因子库;对损失函数进行多维度非等权处理,构建多尺度空间转换模型MF‑ST‑Unet;模型训练后最终生成逐小时区域高分辨率雨情分析数据集;基于训练好的MF‑ST‑Unet模型,通过迁移学习知识蒸馏,得到应用于覆盖整体区域的高分辨率雨情分析数据集。本发明能够快速有效生成高空间分辨率的均匀网格雨情分析,且较传统方法更加客观、准确;充分考虑雨情的多尺度特征及降水量级的差异,实现高分辨率客观雨情数据获取,提高雨情检测能力和灾害防范精准性,具有极强的应用价值。
-
公开(公告)号:CN118445720A
公开(公告)日:2024-08-06
申请号:CN202410652944.0
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/2431 , G06F18/23213 , G06F18/213 , G06F18/214 , G06F18/22 , G06N3/0464 , G06N3/084 , G01W1/02 , G01W1/10
Abstract: 本发明公开了一种基于神经网络对比学习的极端低温雨雪复合事件的识别方法,包括以下步骤:(1)获取极端低温雨雪复合事件数据集,采集再分析资料;(2)对提取出的复合事件的500hPa环流场和850hPa风场进行降维并聚类分析,得到三类不同环流形势组合的极端低温雨雪复合事件,并对每个事件进行分类标记;(3)利用得到的标签,构建Contrastive Learning需要的正负样本训练集;(4)搭建卷积神经网络的神经网络模型;(5)基于训练集和模型进行训练;(6)基于未标签的再分析数据,对极端低温雨雪复合事件进行识别;本发明通过比较数据点之间的相似性,学习到更具有泛化能力的表示。
-
公开(公告)号:CN118445720B
公开(公告)日:2025-03-18
申请号:CN202410652944.0
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/2431 , G06F18/23213 , G06F18/213 , G06F18/214 , G06F18/22 , G06N3/0464 , G06N3/084 , G01W1/02 , G01W1/10
Abstract: 本发明公开了一种基于神经网络对比学习的极端低温雨雪复合事件的识别方法,包括以下步骤:(1)获取极端低温雨雪复合事件数据集,采集再分析资料;(2)对提取出的复合事件的500hPa环流场和850hPa风场进行降维并聚类分析,得到三类不同环流形势组合的极端低温雨雪复合事件,并对每个事件进行分类标记;(3)利用得到的标签,构建Contrastive Learning需要的正负样本训练集;(4)搭建卷积神经网络的神经网络模型;(5)基于训练集和模型进行训练;(6)基于未标签的再分析数据,对极端低温雨雪复合事件进行识别;本发明通过比较数据点之间的相似性,学习到更具有泛化能力的表示。
-
-
-