一种基于机器学习的车牌检测方法

    公开(公告)号:CN102968646B

    公开(公告)日:2015-11-04

    申请号:CN201210411259.6

    申请日:2012-10-25

    Abstract: 本发明公开了一种基于机器学习的车牌检测方法,首先将原始彩色图像转换为梯度图像;然后结合Adaboost快速检测且虚警率低的特点,采用多尺度遍历搜索方式对车牌目标进行检测;最后将检测结果二值化和形态学处理,根据国内车牌字符特点对检测结果进行评判,标记车牌区域与准伪车牌区域。进一步,还提取准伪车牌区域特征,采用SVM对准伪车牌区域进行多尺度遍历识别,最后对识别结果评判输出。本发明采用梯度图像表示方法,从而将车辆牌照外观表现形式实现统一,利用Adaboost多尺度遍历搜索方式,能快速、有效地从复杂场景中提取出不同车牌;最后结合SVM对准伪车牌区域进行识别,进一步降低了虚警提高了检测率;其在道路交通监控、停车场管理等方面有广泛的应用前景。

    一种基于监控视频处理的车流统计和违规检测的方法

    公开(公告)号:CN103116987B

    公开(公告)日:2014-10-29

    申请号:CN201310023021.0

    申请日:2013-01-22

    Abstract: 本发明公开了一种基于监控视频处理的车流统计和违规检测的方法,包括步骤:获取视频源,读取一帧图像,判断当前帧是否是第一帧,如果不是,则利用当前帧和上一帧对应像素点的差值信息来更新前景背景图像,并利用前景背景图像提取当前帧的感兴趣区域MASK,计算当前帧的积分图像和平方积分图像,根据计算得到的当前帧的积分图像和平方积分图像并利用Adaboost算法在当前帧的感兴趣区域MASK中检测是否存在有车牌目标,检测到的车牌目标位置信息保存在列表TmpList中,判断临时目标列表TmpList是否为空,如果为空,则判断跟踪目标序列Track_List是否为空,如果为空,将ObjList列表中检测到的目标添加入Track_List。本发明可精确统计路口车流量,并综合交通信号灯指示判断车辆目标是否违规。

    一种基于模板匹配的字符识别方法

    公开(公告)号:CN102663377B

    公开(公告)日:2014-08-27

    申请号:CN201210067861.2

    申请日:2012-03-15

    Abstract: 一种基于模板匹配的字符识别方法,属于模式识别与图像处理技术领域,具体涉及图像匹配及识别,本方法可以对字符图像进行识别。目的是开发一种简单快速有效的字符识别方法,从而能够获取图像中的字符信息。本发明主要包含如下几个处理单元:图像尺度变换、图像二值化、图像归一化、模板匹配及字符判别。在整个处理过程中,对OTSU分割、图像缩放、上下文信息、模板匹配等方法进行了综合的应用。本发明可以(但不限于)应用于实时的车牌识别系统中的字符识别模块。

    一种基于监控视频处理的车流统计和违规检测的方法

    公开(公告)号:CN103116987A

    公开(公告)日:2013-05-22

    申请号:CN201310023021.0

    申请日:2013-01-22

    Abstract: 本发明公开了一种基于监控视频处理的车流统计和违规检测的方法,包括步骤:获取视频源,读取一帧图像,判断当前帧是否是第一帧,如果不是,则利用当前帧和上一帧对应像素点的差值信息来更新前景背景图像,并利用前景背景图像提取当前帧的感兴趣区域MASK,计算当前帧的积分图像和平方积分图像,根据计算得到的当前帧的积分图像和平方积分图像并利用Adaboost算法在当前帧的感兴趣区域MASK中检测是否存在有车牌目标,检测到的车牌目标位置信息保存在列表TmpList中,判断临时目标列表TmpList是否为空,如果为空,则判断跟踪目标序列Track_List是否为空,如果为空,将ObjList列表中检测到的目标添加入Track_List。本发明可精确统计路口车流量,并综合交通信号灯指示判断车辆目标是否违规。

    一种基于机器学习的车牌检测方法

    公开(公告)号:CN102968646A

    公开(公告)日:2013-03-13

    申请号:CN201210411259.6

    申请日:2012-10-25

    Abstract: 本发明公开了一种基于机器学习的车牌检测方法,首先将原始彩色图像转换为梯度图像;然后结合Adaboost快速检测且虚警率低的特点,采用多尺度遍历搜索方式对车牌目标进行检测;最后将检测结果二值化和形态学处理,根据国内车牌字符特点对检测结果进行评判,标记车牌区域与准伪车牌区域。进一步,还提取准伪车牌区域特征,采用SVM对准伪车牌区域进行多尺度遍历识别,最后对识别结果评判输出。本发明采用梯度图像表示方法,从而将车辆牌照外观表现形式实现统一,利用Adaboost多尺度遍历搜索方式,能快速、有效地从复杂场景中提取出不同车牌;最后结合SVM对准伪车牌区域进行识别,进一步降低了虚警提高了检测率;其在道路交通监控、停车场管理等方面有广泛的应用前景。

    一种基于模板匹配的字符识别方法

    公开(公告)号:CN102663377A

    公开(公告)日:2012-09-12

    申请号:CN201210067861.2

    申请日:2012-03-15

    Abstract: 一种基于模板匹配的字符识别方法,属于模式识别与图像处理技术领域,具体涉及图像匹配及识别,本方法可以对字符图像进行识别。目的是开发一种简单快速有效的字符识别方法,从而能够获取图像中的字符信息。本发明主要包含如下几个处理单元:图像尺度变换、图像二值化、图像归一化、模板匹配及字符判别。在整个处理过程中,对OTSU分割、图像缩放、上下文信息、模板匹配等方法进行了综合的应用。本发明可以(但不限于)应用于实时的车牌识别系统中的字符识别模块。

Patent Agency Ranking