一种基于深度学习的复杂性状高效基因组预测方法

    公开(公告)号:CN117711484A

    公开(公告)日:2024-03-15

    申请号:CN202311826967.0

    申请日:2023-12-27

    Abstract: 本发明公开了一种基于深度学习的复杂性状高效基因组预测方法,包括:S1,获取测序得到的全基因组数据以及田间获取的表型数据,并对其数据预处理;S2,通过充分提取SNP位点间的局部和全局特征,构建单性状基因组预测模型;S3,通过计算表型性状之间的相关性确定辅助性状的数量,构建多性状联合基因组预测深度学习模型;S4,基于预处理后的全基因组数据和表型数据训练gMLP模型和MT‑gMLP模型,进而实现育种决策辅助;S5,通过Saliency map的可解释技术解析MT‑gMLP模型与gMLP模型预测准确率差异的原因,以及挖掘表型相关的潜在基因以及功能位点。本发明实现了基于SNP数据精准预测复杂性状的表型值,进而加快作物智能设计育种。

Patent Agency Ranking