图数据的增广、图神经网络训练方法、装置以及设备

    公开(公告)号:CN114372566A

    公开(公告)日:2022-04-19

    申请号:CN202210277845.X

    申请日:2022-03-21

    Abstract: 本说明书实施例公开了图数据的增广、图神经网络训练方法、装置以及设备。增广方案包括:所述图数据包括多个节点以及节点之间的边;确定所述图数据中的指定节点以及所述指定节点的邻居节点;在所述邻居节点中选择部分节点,作为待增广节点;在所述图数据中的所述待增广节点对应的路径上,选择与所述待增广节点的距离小于预设阈值的节点,作为目标节点;将所述待增广节点与所述指定节点之间的边删除,并在所述目标节点与所述指定节点之间生成新的边,以生成增广图数据。

    一种基于图卷积网络模型的分类方法及装置

    公开(公告)号:CN112699938B

    公开(公告)日:2024-01-05

    申请号:CN202011604370.8

    申请日:2020-12-30

    Inventor: 石川 王啸 薄德瑜

    Abstract: 本发明实施例提供了一种基于图卷积网络模型的分类方法及装置,获取目标对象的待处理特征数据,并输入至目标图卷积网络模型;目标图卷积网络模型包括多层感知器、卷积网络和特征变换层;通过多层感知器分别对每一目标对象的待处理特征数据进行非线性变换,得到该目标对象的第一特征数据;通过卷积网络,对各目标对象的第一特征数据进行特征提取,得到各目标对象的聚合特征数据;通过特征变换层分别对每一目标对象的聚合特征数据进行映射处理,得到该目标对象的类别标签;在预设的类别标签与类别的对应关系中,确定每一目标对象的类别标签对应的类别,作为该目标对象的类别。基于上述

    一种基于图卷积网络模型的分类方法及装置

    公开(公告)号:CN112699938A

    公开(公告)日:2021-04-23

    申请号:CN202011604370.8

    申请日:2020-12-30

    Inventor: 石川 王啸 薄德瑜

    Abstract: 本发明实施例提供了一种基于图卷积网络模型的分类方法及装置,获取目标对象的待处理特征数据,并输入至目标图卷积网络模型;目标图卷积网络模型包括多层感知器、卷积网络和特征变换层;通过多层感知器分别对每一目标对象的待处理特征数据进行非线性变换,得到该目标对象的第一特征数据;通过卷积网络,对各目标对象的第一特征数据进行特征提取,得到各目标对象的聚合特征数据;通过特征变换层分别对每一目标对象的聚合特征数据进行映射处理,得到该目标对象的类别标签;在预设的类别标签与类别的对应关系中,确定每一目标对象的类别标签对应的类别,作为该目标对象的类别。基于上述处理,可以提高确定出的目标对象的类别的准确性。

Patent Agency Ranking