-
公开(公告)号:CN119251680A
公开(公告)日:2025-01-03
申请号:CN202411380023.X
申请日:2024-09-30
Applicant: 北京卫星信息工程研究所
IPC: G06V20/10 , G06V10/764 , G06V10/774 , G06V10/74 , G06V10/82 , G06N3/08 , G06N3/045 , G06N3/048
Abstract: 本发明涉及一种基于提示学习的遥感图像分类方法,包括:获取遥感图像样本及其真实类别标签,并进行预处理,形成遥感图像数据集;根据遥感图像数据集,通过图像编码器和文本编码器,获得遥感图像样本的图像特征向量和文本特征向量;计算遥感图像样本的图像特征向量和文本特征向量之间的相似性,得到遥感图像样本的预测类别标签;计算分类损失和对比损失,重复执行上述步骤,训练并输出分类模型;利用分类模型进行遥感图像分类。本发明,通过上述方法缓解了遥感图像分类方法中语义信息不足的问题,提高了遥感图像分类准确性。
-
公开(公告)号:CN113269691B
公开(公告)日:2022-10-21
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
IPC: G06T5/00 , G06N3/04 , G06N3/08 , G06V10/774
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
公开(公告)号:CN113269691A
公开(公告)日:2021-08-17
申请号:CN202110584825.2
申请日:2021-05-27
Applicant: 北京卫星信息工程研究所 , 哈尔滨工程大学
Abstract: 本发明公开的属于SAR图像去噪方法技术领域,具体为一种基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法,该基于卷积稀疏进行噪声仿射拟合的SAR图像去噪方法的具体实施方案如下:利用图像增广和图像重进消除噪声特性对于模型训练过程的影响,本发明构建的网络具有训练初期收敛效率高,末期收敛情况与其他基准模型相同的特征,利用稀疏表示与卷积滤波器的特性,进一步节省了训练时间,提高了模型的迭代效率,借助图像增广丰富数据以及图像重建消除噪声特性的设计,本发明有效地降低了SAR图像去噪过程对无噪声SAR图像的需求度,减少了实际任务中在无噪声SAR图像获取过程投入的开支,并取得更为优秀的SAR图像去噪效果。
-
-