-
公开(公告)号:CN104570207B
公开(公告)日:2017-12-29
申请号:CN201510028170.5
申请日:2015-01-20
Applicant: 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: G02B6/122
Abstract: 本发明提供一种大角度准自准直光子晶体及其准直度定量方法,所述大角度准自准直光子晶体至少包括:矩形晶格光子晶体介质柱;位于该光子晶体外起抗反射层作用的单排抗反射介质柱;所述光子晶体介质柱及所述抗反射介质柱处在空气介质中,可通过刻蚀SOI衬底的顶层硅得到。本发明的优点包括:基于最小二乘法来定量光子晶体等频线的准直度,改变光子晶体晶格对称性可实现准自准直光束传播,同时通过优化单排光子晶体介质柱的结构参数,可使得大角度入射光束能高效耦合进入准自准直光子晶体,制作工艺与CMOS工艺完全兼容,无需复杂工艺,加工成本低。
-
公开(公告)号:CN106646783A
公开(公告)日:2017-05-10
申请号:CN201710078304.3
申请日:2017-02-14
Applicant: 上海新微科技服务有限公司 , 中国科学院上海微系统与信息技术研究所 , 中科院南通光电工程中心
CPC classification number: G02B6/4246 , G02B6/4204 , G02B6/43
Abstract: 本发明提供一种硅基WDM光收发模块,所述硅基WDM光收发模块包括:硅光子芯片,包括调制器阵列和探测器阵列;以及基于平面光波导技术实现的波分复用器及解复用器,所述波分复用器与所述调制器阵列通过封装连接,所述解复用器与所述探测器阵列通过封装连接。本发明通过将硅光子芯片和基于平面光波导技术(PLC)实现的波分复用及解复用芯片封装在一起实现WDM光模块,从而避免硅基波分复用/解复用器在工艺上的困难;并且,针对传统基于分立器件和PLC技术的WDM光收发模块,集成度低,功耗高的缺点,本发明通过采用硅光子技术将调制器阵列和探测器阵列集成在一起,可以大大提高光收发模块的集成度,降低功耗。
-
公开(公告)号:CN105785507A
公开(公告)日:2016-07-20
申请号:CN201410829315.7
申请日:2014-12-26
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: G02B6/126
Abstract: 本发明提供一种偏振分束旋转器,所述偏振分束旋转器至少包括:形成在SOI材料的顶层硅中的波导,至少包括顺次连接的单模输入波导、双刻蚀波导和非对称Y分支波导;双刻蚀波导包括一端与所述单模输入波导尾端相连接的第一刻蚀区和位于所述第一刻蚀区两侧的第二刻蚀区,第一刻蚀区的高度大于第二刻蚀区的高度;非对称Y分支波导包括根波导、第一分支波导和第二分支波导,根波导与第一刻蚀区的尾端相连,第一Y分支波导的宽度大于第二Y分支波导的宽度。由于双刻蚀波导的模式转换和非对称Y分支波导的模式分配是宽带的,本发明提供的偏振分束旋转器中利用了这两个基本结构的宽带特性,解决传统偏振分束旋转器带宽较窄的缺点。
-
公开(公告)号:CN103809238B
公开(公告)日:2016-06-15
申请号:CN201210446936.8
申请日:2012-11-09
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种亚波长Y分支波导及制备方法。首先,在含氧基底表面沉积硬掩膜;随后,在所述硬掩膜表面制作出Y型周期性光刻胶图形层;接着,以该Y型周期性光刻胶图形层为掩膜制备Y型周期性硬掩膜图形层;最后,以Y型周期性硬掩膜图形层为掩膜对所述含氧基底的顶层进行刻蚀来形成能传输亚波长波的Y型周期性柱体结构,本发明的亚波长Y分支波导结构紧凑,制备方法能与集成电路工艺兼容。
-
公开(公告)号:CN105652371A
公开(公告)日:2016-06-08
申请号:CN201410664561.1
申请日:2014-11-14
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种偏振分束器,所述偏振分束器至少包括:形成在SOI材料的顶层硅上的波导,所述波导至少包括第一级Y分支波导、第二级Y分支波导、第三级Y分支波导,以及模式转化器;所述第二级Y分支波导包括第三分支波导和第四分支波导;其中,所述模式转化器连接第一级Y分支波导的根波导和第二级Y分支波导的根波导;所述第四分支波导连接所述第三级Y分支波导的根波导;所述第一级Y分支波导的根波导的宽度S1的取值范围为S1>1μm。本发明提供的偏振分束器具有几百纳米的工作带宽和较为简单的加工工艺。
-
公开(公告)号:CN105629522A
公开(公告)日:2016-06-01
申请号:CN201410620813.0
申请日:2014-11-06
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
IPC: G02F1/025
Abstract: 本发明提供一种硅基光调制器,至少包括:脊型波导,所述脊型波导包括平板部和位于所述平板部中间的凸条,所述凸条高于所述平板部;所述脊型波导中形成有第一轻掺杂区和第二轻掺杂区,所述第一轻掺杂区形成于所述凸条中间,且沿所述凸条的延伸方向延伸;所述第二轻掺杂区形成于所述第一轻掺杂区两侧的凸条中和与所述凸条两侧相连的平板部中;所述第一轻掺杂区和所述第二轻掺杂区的掺杂类型相反。在本发明的技术方案中,在脊型波导的凸条内由第一轻掺杂区和第二轻掺杂区形成两个背对背的PN结,在硅基光调制器工作时可以形成两个耗尽区,弥补解决离子注入对准误差的问题,并且提高了硅基光调制器的调制效率。
-
公开(公告)号:CN102902009B
公开(公告)日:2015-05-27
申请号:CN201210418418.5
申请日:2012-10-26
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种具有光子晶体的单纤三向复用器。该单纤三向复用器至少包括:用于接入第一波长及第二波长的光波信号的输入波导;用于接入第三波长的光波信号的上传波导;第一输出波导;第二输出波导;及多模波导耦合器;该多模波导耦合器用于分离所述第一波长信号及第二波长信号,并使两者分别由第一输出波导及第二输出波导输出;此外,该多模波导耦合器所具有的光子晶体,能反射所述第三波长的光波信号,并使该光波信号由输入波导输出。优选地,输入波导、上传波导、第一输出波导、第二输出波导、多模波导耦合器及光子晶体均通过对半导体基底的刻蚀来形成。本发明的优点包括:结构紧凑小巧,且制作工艺与CMOS工艺完全兼容,无需复杂工艺,加工成本低。
-
公开(公告)号:CN102904159A
公开(公告)日:2013-01-30
申请号:CN201210418410.9
申请日:2012-10-26
Applicant: 江苏尚飞光电科技有限公司 , 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于BCB(苯并环丁烯)键合工艺的混合集成激光器及其制作方法,所述混合集成激光器包括具有硅衬底、埋氧层及硅波导结构的SOI基光波导芯片、BCB覆层、具有底接触层、有源层、隧道结及顶接触层的Ⅲ-Ⅴ族激光器外延层、贯穿所述Ⅲ-Ⅴ族激光器外延层、BCB覆层及埋氧层的热沉通孔、填充于所述热沉通孔内的多晶硅热沉;结合于所述Ⅲ-Ⅴ族激光器外延层表面且具有电极通孔的氮化硅隔离层以及电极结构。本发明采用BCB键合工艺实现了SOI硅基光波导芯片与Ⅲ-Ⅴ族激光器的单片集成,并且引入多晶硅热沉结构以提高激光器的性能。本发明可作为硅基光源器件,为硅基光集成芯片提供片上光源。
-
公开(公告)号:CN108155562B
公开(公告)日:2019-12-10
申请号:CN201611100728.7
申请日:2016-12-05
Applicant: 上海新微科技服务有限公司 , 中国科学院上海微系统与信息技术研究所 , 中科院南通光电工程中心
IPC: H01S5/30
Abstract: 本发明提供一种铝、磷共掺杂硅纳米晶的制备方法,包括步骤:步骤1),提供一基底,采用低压化学气相沉积法于基底上沉积出铝和磷掺杂的二氧化硅薄膜;步骤2),采用分相热处理工艺使所述二氧化硅薄膜中分相析出铝和磷掺杂的硅纳米晶,所述硅纳米晶镶嵌于二氧化硅薄膜中;步骤3),对所述二氧化硅薄膜及硅纳米晶进行氢气钝化处理,以去除二氧化硅薄膜及硅纳米晶中的缺陷和悬挂键。本发明分别采用铝和磷进行P型和N型掺杂,扩大了硅纳米晶发光的光谱范围,降低了由于俄歇效应产生的光子吸收,提高了硅纳米晶发光效率,同时,本发明所制得的硅纳米晶杂质掺杂量可调,结晶质量好,是一种理想的硅基片上光源。
-
公开(公告)号:CN106145021B
公开(公告)日:2017-12-29
申请号:CN201510137590.7
申请日:2015-03-26
Applicant: 中科院南通光电工程中心 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种光学微纳谐振腔结构及其制作方法,所述光学微纳谐振腔结构包括两个对工作电磁波具有全反射功能的单排粒子链,所述单排粒子链由多个间隔排列的粒子组成,所述两个单排粒子链之间的间隔距离使得所述光学微纳谐振腔结构的共振波长为工作电磁波的波长。本发明利用了单排粒子链对于特定偏振光的全反射特性,通过优化单排粒子链的结构以及两个单排粒子链之间的距离,获得了一种新型的高品质因子光学微纳谐振腔。本发明利用两个单排粒子链的全反射所设计的谐振腔,具有低损耗、高品质因子和小尺寸的特点,在集成光学领域具有很好的应用前景。
-
-
-
-
-
-
-
-
-