-
公开(公告)号:CN111569882A
公开(公告)日:2020-08-25
申请号:CN202010545682.X
申请日:2020-06-16
Applicant: 中国计量大学
IPC: B01J23/75 , C07C213/02 , C07C215/76
Abstract: 本发明提供了一种四氧化三钴负载铜纳米催化剂及其制备方法,该催化剂是以四氧化三钴为基底的铜金属催化剂,简写为Cu-Co3O4,该催化剂的主要制备过程如下:以硝酸铜为前驱体,经水热和煅烧而成四氧化三钴(Co3O4)基底,然后将Co3O4分散在超纯水中,与还原剂,硝酸铜溶液混合,经剧烈搅拌,使得金属铜沉积在Co3O4表面,本发明合成的催化剂催化性能优异,且制备过程对环境友好,具有广阔的应用前景。
-
公开(公告)号:CN106328393B
公开(公告)日:2018-05-25
申请号:CN201610853991.7
申请日:2016-09-28
Applicant: 中国计量大学
CPC classification number: Y02E60/13
Abstract: 一种NiCo2O4@碳纳米管复合材料的制备方法,它涉及一种NiCo2O4纳米颗粒填充碳纳米管的制备方法,包括步骤:将碳纳米管溶于二甘醇中超声分散60 min,然后按Ni2+/Co2+摩尔比为1:2加入Ni(NO3)2·6H2O和Co(NO3)2·6H2O,在80℃下充分搅拌均匀后逐滴加入一定量的NH3·H2O得到混合溶液;将所述混合溶液移入反应釜,置换CO2,置换之后将CO2的压强调到0.05~0.1 MPa;将反应釜放进烘箱中,设置温度为160~240℃,反应时间为10~24 h;所得产物用乙醇和蒸馏水清洗至中性,离心分离,在300℃煅烧2 h得到NiCo2O4@碳纳米管复合材料。本发明方法具有填充过程温度低、操作简单和避免了酸处理对碳纳米管结构的破坏等优点;所获得的NiCo2O4@碳纳米管复合材料用于超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。
-
公开(公告)号:CN107910436A
公开(公告)日:2018-04-13
申请号:CN201711334594.X
申请日:2017-12-14
Applicant: 中国计量大学
Abstract: 本发明涉及一种复相多铁材料的制备方法。本发明在衬底上或施加电场使铁电衬底产生应力预变形,或通过机械装置在铁电衬底上施加拉应力或压应力产生预变形;在预变形的铁电薄膜衬底上通过脉冲激光沉积、磁控溅射、或分子束外延等方法生长铁磁性薄膜;在铁磁性薄膜制备完成后,移除铁电衬底上的电场或机械装置,获得复相多铁材料;铁电衬底在铁磁性薄膜的约束下无法再变回原来形状,因而在界面处产生应力,铁磁性薄膜的磁性受该应力的调控。本发明获得的复相多铁材料中预应力的存在,使得较小的外电场就可能改变铁磁性薄膜的磁化状态,降低了响应场。
-
公开(公告)号:CN105869814B
公开(公告)日:2018-01-30
申请号:CN201610469972.4
申请日:2016-06-26
Applicant: 中国计量大学
Abstract: 本发明涉及一种扁平化氮化铁磁粉及其制备方法。该发明采用湿法球磨的方法,采用正己烷或无水乙醇为介质,选择球料比为5:1~20:1,控制球磨机转速为300~600r/min,控制球磨时间为0.1~10h,获得扁平化效果良好的片状铁粉;然后通入O2,在300~400℃氧化1‑10h,获得扁平化氧化铁;通入氢气,在300~400℃还原4‑20h,重新获得扁平化铁粉;通入氨气,在120~200℃氮化1~30h。该方法通过将铁粉扁平化,有效增大了单位体积铁粉的表面积,利于渗氮;同时球磨后的铁粉,内应力较大,缺陷也较多,也有利于氮的渗透。
-
公开(公告)号:CN105858625B
公开(公告)日:2018-01-30
申请号:CN201610469980.9
申请日:2016-06-26
Applicant: 中国计量大学
Abstract: 本发明涉及一种氮化铁纳米线及其制备方法。该发明在电解槽中采用电沉积法在氧化铝基板上制备铁纳米线;将铁纳米线取出,置于热处理炉中,以恒定的速率通入O2,在300~400℃氧化1‑10h,以获得氧化铁纳米线;通入氢气,在300~400℃还原4‑20h,以重新获得铁纳米线;通入氨气,在120~200℃氮化1~30h,获得高α"‑Fe16N2含量的氮化铁纳米线。该方法通过纳米尺度的线状铁粉制备氮化铁,其在直径方向尺寸非常小,有利于氮化。
-
公开(公告)号:CN104972130B
公开(公告)日:2017-10-27
申请号:CN201510361542.6
申请日:2015-06-28
Applicant: 中国计量大学
IPC: B22F3/22
Abstract: 一种交变磁场中金属/陶瓷梯度材料的凝胶注模制备方法,属于材料制备领域。其步骤为:1)模具准备;2)将金属粉末和陶瓷粉末按一定比例与水或非水溶剂混合后,在球磨机中搅拌制成均匀弥散的浆料,浇铸;3)模具外施加交变磁场,电流强度为0.1~20A,电流频率为102~105Hz,作用时间为1~20min;4)凝胶,干燥、烧结。本发明方法的优点是:通过改变电流强度、电流频率和磁场作用时间,可以获得不同成分分布的梯度材料;利用成熟的陶瓷凝胶注模法成形工艺使制备梯度材料的手续简化、成本降低、性能提高。
-
公开(公告)号:CN114496443A
公开(公告)日:2022-05-13
申请号:CN202210090825.1
申请日:2022-01-26
Applicant: 中国计量大学
Abstract: 本发明公开一种核壳结构磁性材料及其制备方法;包括Fe4N内核和Fe2N覆层,所述Fe2N覆层完全包裹在Fe4N内核之外以形成包含Fe4N和Fe2N两种相的Fe4N/Fe2N磁性颗粒,Fe4N内核和Fe2N覆层之间过渡连续,两者之间通过原子键紧密结合。制备方法为:铁粉在NH3和H2的混合气氛中,550℃氮化8h,得到纯Fe4N相。而后Fe4N在NH3气氛中,500℃氮化0.1~12h,然后在保护气氛中随炉冷却至室温,得到Fe4N/Fe2N核壳结构颗粒。将Fe4N/Fe2N核壳结构颗粒与粘接剂均匀混合,在1.2GPa压力下压制成型,而后保护气氛中在650℃去应力退火2h,得到Fe4N/Fe2N核壳结构磁性材料。本发明的优点在于:原位合成了一种Fe4N/Fe2N核壳结构磁性材料,Fe4N与Fe2N相之间结合紧密,得到的Fe4N和Fe2N相兼具优良的绝缘特性和磁性能,避免了传统非磁性绝缘包覆造成的磁性能降低。
-
公开(公告)号:CN113461065A
公开(公告)日:2021-10-01
申请号:CN202110683647.9
申请日:2021-06-21
Applicant: 中国计量大学
Abstract: 本发明公开一种利用水热法以一水合氢氧化锂、高锰酸钾和还原剂为原料制备锰酸锂的方法。包括以下步骤:(一)、将高锰酸钾和一水合氢氧化锂分别溶解于相同体积的去离子水中,然后将一水合氢氧化锂溶液倒入高锰酸钾溶液中混合均匀;(二)、加入还原剂固体粉末,在室温下搅拌5‑10分钟,搅拌速度为200‑300r/min得到混合液;(三)、混合液转移至反应釜中,反应温度为150‑250℃,反应时间为1‑5小时;(四)、溶液抽滤,用蒸馏水洗涤,然后把所得粉体放入真空箱中,干燥得到的产物为锰酸锂粉体。该法步骤简单、操作容易,制备的甲醛降解催化剂具有较高的甲醛降解效率,稳定性好。
-
公开(公告)号:CN107910436B
公开(公告)日:2021-01-26
申请号:CN201711334594.X
申请日:2017-12-14
Applicant: 中国计量大学
Abstract: 本发明涉及一种复相多铁材料的制备方法。本发明在衬底上或施加电场使铁电衬底产生应力预变形,或通过机械装置在铁电衬底上施加拉应力或压应力产生预变形;在预变形的铁电薄膜衬底上通过脉冲激光沉积、磁控溅射、或分子束外延等方法生长铁磁性薄膜;在铁磁性薄膜制备完成后,移除铁电衬底上的电场或机械装置,获得复相多铁材料;铁电衬底在铁磁性薄膜的约束下无法再变回原来形状,因而在界面处产生应力,铁磁性薄膜的磁性受该应力的调控。本发明获得的复相多铁材料中预应力的存在,使得较小的外电场就可能改变铁磁性薄膜的磁化状态,降低了响应场。
-
公开(公告)号:CN110853910A
公开(公告)日:2020-02-28
申请号:CN201911188802.9
申请日:2019-11-28
Applicant: 中国计量大学
IPC: H01F41/02 , H01F1/33 , H01F7/00 , H01F27/255
Abstract: 本发明公开了一种高磁导率低损耗软磁复合材料的制备方法,在球形软磁合金颗粒外包覆磁性氧化物颗粒层以形成混合粉末;将混合粉末装入模具使混合粉末被压制成型;对成型过程中的混合粉末施加外磁场,所述磁场平行于工作磁路平面,垂直于工作磁路平面法向;去应力退火而获得软磁复合材料。该技术方案非常简便,对磁粉、设备都没有严苛要求,并且无需对现有设备做出大的改进,只需要增加外磁场施加设备,即可实现软磁材料的高性能;软磁合金和磁性氧化物在磁环水平和垂直方向非对称分布,造成工作磁路方向的磁导率更高、损耗更低;本发明由于采用设备少、工艺步骤少、工艺简单,可以快速实现软磁复合材料的工业应用。
-
-
-
-
-
-
-
-
-