基于关键点检测和局部特征对齐的车辆重识别方法

    公开(公告)号:CN112990152B

    公开(公告)日:2021-07-30

    申请号:CN202110504848.8

    申请日:2021-05-10

    Abstract: 本发明属于计算机视觉和模式识别领域,具体涉及一种基于关键点检测和局部特征对齐的车辆重识别方法,旨在解决现有的车辆重识别方法在消除车辆视角变化时特征一致性较差,进而导致车辆重识别鲁棒性较差的问题。本方法包括获取待识别的车辆图像,作为输入图像;对输入图像进行关键点检测,获取待识别的车辆的关键点及其对应的置信度,并将输入图像中待识别的车辆划分为N部分,作为局部图像;提取输入图像、各局部图像的特征,作为全局特征、局部特征,并将各局部特征与全局特征进行拼接,作为综合特征;计算综合特征与车辆图像库中各图像对应特征的距离并进行排序,将排序结果作为重识别结果进行输出。本发明提高了车辆重识别的鲁棒性。

    基于关键点检测和局部特征对齐的车辆重识别方法

    公开(公告)号:CN112990152A

    公开(公告)日:2021-06-18

    申请号:CN202110504848.8

    申请日:2021-05-10

    Abstract: 本发明属于计算机视觉和模式识别领域,具体涉及一种基于关键点检测和局部特征对齐的车辆重识别方法,旨在解决现有的车辆重识别方法在消除车辆视角变化时特征一致性较差,进而导致车辆重识别鲁棒性较差的问题。本方法包括获取待识别的车辆图像,作为输入图像;对输入图像进行关键点检测,获取待识别的车辆的关键点及其对应的置信度,并将输入图像中待识别的车辆划分为N部分,作为局部图像;提取输入图像、各局部图像的特征,作为全局特征、局部特征,并将各局部特征与全局特征进行拼接,作为综合特征;计算综合特征与车辆图像库中各图像对应特征的距离并进行排序,将排序结果作为重识别结果进行输出。本发明提高了车辆重识别的鲁棒性。

Patent Agency Ranking