一种引入运动学约束的3D网络进行手部姿态估计的方法及系统

    公开(公告)号:CN111489379A

    公开(公告)日:2020-08-04

    申请号:CN202010597038.7

    申请日:2020-06-28

    Abstract: 本发明提出了一种引入运动学约束的3D网络进行手部姿态估计的方法及系统,包括以下步骤:步骤1、将原始的深度图中定位出的手部区域转化成体素化的输入;步骤2、引入运动学约束的3D手部姿态估计网络;步骤3、评估预测的关节点位置的准确性、并评估预测出的关节点所形成的手部姿态的合理性。该网络以体素化的手部区域作为输入,经过3D卷积神经网络,预测表示关节点概率分布的3D heatmap。heatmap中最大值的位置也就是关节点的位置;利用3D heatmap获得关节点的位置然后根据关节点之间的对应关系计算出骨骼的长度。通过对3D heatmap进行处理,获得各个关节点的坐标以及对应的骨骼长度,从而可以利用修改损失函数的方式对预测的结果添加运动学约束。

    一种引入运动学约束的3D网络进行手部姿态估计的方法及系统

    公开(公告)号:CN111489379B

    公开(公告)日:2020-10-02

    申请号:CN202010597038.7

    申请日:2020-06-28

    Abstract: 本发明提出了一种引入运动学约束的3D网络进行手部姿态估计的方法及系统,包括以下步骤:步骤1、将原始的深度图中定位出的手部区域转化成体素化的输入;步骤2、引入运动学约束的3D手部姿态估计网络;步骤3、评估预测的关节点位置的准确性、并评估预测出的关节点所形成的手部姿态的合理性。该网络以体素化的手部区域作为输入,经过3D卷积神经网络,预测表示关节点概率分布的3D heatmap。heatmap中最大值的位置也就是关节点的位置;利用3D heatmap获得关节点的位置然后根据关节点之间的对应关系计算出骨骼的长度。通过对3D heatmap进行处理,获得各个关节点的坐标以及对应的骨骼长度,从而可以利用修改损失函数的方式对预测的结果添加运动学约束。

    基于张量分解的深度卷积神经网络的加速与压缩方法

    公开(公告)号:CN106127297A

    公开(公告)日:2016-11-16

    申请号:CN201610387878.4

    申请日:2016-06-02

    CPC classification number: G06N3/04 G06N3/06

    Abstract: 本发明公开了一种基于张量分解的深度卷积神经网络的加速与压缩方法。其中,所述方法至少包括:步骤1:获取原始深度卷积神经网络;步骤2:对所述原始深度卷积神经网络中各层的权值张量进行张量分解,得到多个低秩子张量;步骤3:用所述多个低秩子张量替换所述原始深度卷积神经网络中各层的权值张量,获得新的深度卷积神经网络。通过本发明实施例,实现了大型深度卷积神经网络的加速与压缩。

    一种基于弱监督学习的图像语义解析方法

    公开(公告)号:CN103336969B

    公开(公告)日:2016-08-24

    申请号:CN201310214812.1

    申请日:2013-05-31

    Inventor: 卢汉清 刘静 刘洋

    Abstract: 本发明公开了一种基于弱监督学习的图像语义解析方法,用以解决在给定大量用户标注图像基础上,将图像分割成一系列具有单一语义的完整区域,同时对各区域实现语义标注的问题。本发明包括:联合谱聚类与判别式聚类的双重聚类方法,对由过分割方法得到的图像子区域进行聚类;同时,利用图像级别标注与图像区域级别标注的对应约束关系,构建以误差最小化为目标的弱监督学习模型,为各图像子区域的聚类集合分配语义标签。此外,通过判别式聚类学习到的多类分类器,可以实现针对没有标签信息图像的语义解析。本发明不仅可以给图像添加语义标签,还可以将标签添加到图像中的对应区域,实现更细粒度的图像语义理解。

    联合显著性检测与判别式学习的目标前景协同分割方法

    公开(公告)号:CN103390279A

    公开(公告)日:2013-11-13

    申请号:CN201310316589.1

    申请日:2013-07-25

    Inventor: 卢汉清 刘静 李勇

    Abstract: 本发明公开了一种联合显著性检测与判别式学习的目标前景协同分割方法,包括:步骤1,将图像集中的每幅图像过分割成多个超像素块,并对每个超像素块提取特征;步骤2,将图像集中共有的显著性区域提取出来作为目标前景,而将非显著性区域和具有显著性但不是该图像集中共有的区域作为背景区域,其中采用低秩矩阵分解进行图像的显著性检测,采用逻辑回归来选择共有的显著性区域作为最终的目标。本发明通过低秩矩阵分解可以有效地检测显著性区域,去除背景一致性的影响,而判别式学习可以提取出共有显著性区域。低秩矩阵分解与判别式学习过程在统一的框架下联合优化,两者相互影响,共同提升。最终可以获得共有显著性区域作为目标前景区域。

Patent Agency Ranking