-
公开(公告)号:CN104915952B
公开(公告)日:2018-04-27
申请号:CN201510249956.X
申请日:2015-05-15
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种深度图像中基于多叉树的局部凸出对象提取方法,包括以下步骤:对输入深度图像进行逐像素邻域差分,建立基于多叉树数据结构的深度树模型以及深度树节点与图像像素的映射图;对深度树的叶子节点进行局部优化,去除噪声;遍历深度树的叶子节点得到深度图像的局部极值区域,利用判决函数确定叶子节点的子树根节点位置,从而提取出局部凸出对象区域。本发明能够快速、准确的提取出多个凸出对象区域,提升深度图像中凸出物体检测的准确度。
-
公开(公告)号:CN104915952A
公开(公告)日:2015-09-16
申请号:CN201510249956.X
申请日:2015-05-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06T7/00
CPC classification number: G06T7/11
Abstract: 本发明涉及一种深度图像中基于多叉树的局部凸出对象提取方法,包括以下步骤:对输入深度图像进行逐像素邻域差分,建立基于多叉树数据结构的深度树模型以及深度树节点与图像像素的映射图;对深度树的叶子节点进行局部优化,去除噪声;遍历深度树的叶子节点得到深度图像的局部极值区域,利用判决函数确定叶子节点的子树根节点位置,从而提取出局部凸出对象区域。本发明能够快速、准确的提取出多个凸出对象区域,提升深度图像中凸出物体检测的准确度。
-