-
公开(公告)号:CN114859453A
公开(公告)日:2022-08-05
申请号:CN202210611634.5
申请日:2022-05-19
Applicant: 中国科学院上海光学精密机械研究所 , 暨南大学
IPC: G02B5/18
Abstract: 一种基于连续界面全介质薄膜的随机偏振合束光栅,包括基底,在该基底上依次镀制的高反射膜层、剩余层和光栅刻蚀层,所述高反射膜层由高折射率薄膜层和低折射率薄膜层交替叠加构成,且所述高折射率薄膜层与低折射率薄膜层之间设有折射率连续界面层,该折射率连续界面层的折射率由高折射率薄膜层的折射率向低折射率薄膜层的折射率连续过渡而成。本发明随机偏振合束光栅利用连续界面激发泄露模共振,可以实现随机偏振入射光的‑1级衍射效率在40‑100纳米带宽内大于99%,最高可达99.95%,在高能光谱合束激光、超强超短激光脉冲压缩领域具有重要的应用价值。
-
公开(公告)号:CN114859453B
公开(公告)日:2024-02-09
申请号:CN202210611634.5
申请日:2022-05-19
Applicant: 中国科学院上海光学精密机械研究所 , 暨南大学
IPC: G02B5/18
Abstract: 一种基于连续界面全介质薄膜的随机偏振合束光栅,包括基底,在该基底上依次镀制的高反射膜层、剩余层和光栅刻蚀层,所述高反射膜层由高折射率薄膜层和低折射率薄膜层交替叠加构成,且所述高折射率薄膜层与低折射率薄膜层之间设有折射率连续界面层,该折射率连续界面层的折射率由高折射率薄膜层的折射率向低折射率薄膜层的折射率连续过渡而成。本发明随机偏振合束光栅利用连续界面激发泄露模共振,可以实现随机偏振入射光的‑1级衍射效率在40‑100纳米带宽内大于99%,最高可达99.95%,在高能光谱合束激光、超强超短激光脉冲压缩领域具有重要的应用价值。
-
公开(公告)号:CN119653896A
公开(公告)日:2025-03-18
申请号:CN202411747567.5
申请日:2024-12-02
Applicant: 暨南大学
Abstract: 本发明属于智能光电探测器件领域,具体公开了一种PMN‑PT基光电探测器的双模式事件相机及其制备方法,通过掩模辅助沉积阵列电极,构建了弛豫铁电体PMN‑PT光电探测器,并表现出双模光响应特性;在0V时,从可见光到近红外波段都可以看到由热释电效应引起的典型对称尖峰;在适当的偏置电压下,在405nm激光激发下,光响应波形转变为以体光伏效应为主的方形;将PMN‑PT基光电探测器用于构建事件相机,当车辆经过时再施加偏压启动相机,利用体光伏效应对车辆进行图像捕获,解决传统相机能耗大的问题。
-
公开(公告)号:CN116819681A
公开(公告)日:2023-09-29
申请号:CN202310508688.3
申请日:2023-05-08
Applicant: 暨南大学
IPC: G02B6/122 , G02B6/136 , G02B6/125 , G02F1/295 , G02F1/29 , G02B6/13 , G02F1/03 , G02F1/035 , G02B6/12
Abstract: 本发明涉及集成光芯片领域,更具体地,涉及一种基于微结构的电光波导阵列光学相控阵。用于解决传统电光调制的光束扫描器件仍然难于达到高速化(GHZ)、大扫描角度(视场)等要求的问题。这种光束扫描技术自上而下的结构为微结构电极、缓冲层、铌酸锂层或者绝缘体上薄膜铌酸锂平台(LNOI);上述的微结构电极为周期性矩形打孔电极;所述铌酸锂和缓冲层内包裹有电子束光刻铌酸锂波导;所述电子束光刻波导设置有入射区域、分束区域、调制区域和输出区域共同构成波导区;所述芯片的出射区域设置有超晶格单元;所述超晶格单元为不同间隔分布的铌酸锂波导序列;通过上述技术方案,以实现高速率、大扫描角度的技术效果。
-
公开(公告)号:CN115437166A
公开(公告)日:2022-12-06
申请号:CN202211015760.0
申请日:2022-08-24
Applicant: 暨南大学
Abstract: 本发明公开了一种基于谐振结构的太赫兹光纤滤波器,包括:侧边抛磨太赫兹光纤、谐振结构,其中谐振结构是一种微纳长方体柱,该结构集成于侧边抛磨太赫兹光纤的侧边抛磨平坦区。微纳长方体柱起到类谐振腔效果,使得符合微纳长方体柱谐振频率的太赫兹波被有效耦合进入谐振腔与微纳长方体柱相互作用产生电磁谐振,电磁谐振频率也被称为该滤波器的中心频率,位于中心频率处的太赫兹电磁能量用于维持电磁振荡,由此形成滤波阻带。随着微纳长方体柱结构尺寸的改变,该滤波器能实现0.1~3THz范围内任一特定窄带内实现较高Q值,较大最大阻带衰减深度和较小的插入损耗的滤波。
-
公开(公告)号:CN109683112A
公开(公告)日:2019-04-26
申请号:CN201811602072.8
申请日:2018-12-26
Applicant: 暨南大学
IPC: G01R33/032
CPC classification number: G01R33/032 , G01R33/0052
Abstract: 本发明涉及光纤磁场传感器技术领域,具体公开了一种磁流体披覆侧抛光纤的磁场传感器及其制备与检测方法,所述磁场传感器包括侧边抛磨光纤、披覆在抛磨区周围的磁流体、光源以及用于检测透射光谱的光谱仪,所述抛磨光纤是通过光纤抛磨掉部分包层制作而成;所述抛磨光纤上设有玻璃毛细管以及光学紫外胶,所述磁流体通过玻璃毛细管以及光学紫外胶密封包裹在侧边抛磨光纤周围;在磁场作用下,纳米粒子随磁场方向汇集或分散,使得纳米粒子的折射率受到磁场强度与方向的控制,从而在纳米粒子与抛磨光纤之间的倏逝场相互作用下,透射光谱信号会受到磁场强度与方向的控制,构成磁场传感器。本发明在于能灵敏地检测到磁场强度与方向的变化,有助于实现高灵敏度磁场测量。
-
公开(公告)号:CN108871566A
公开(公告)日:2018-11-23
申请号:CN201810721303.0
申请日:2018-07-03
Applicant: 暨南大学
IPC: G01J1/42 , H04B10/25 , H04B10/116
Abstract: 本专利涉及光电探测领域,公开了一种光纤集成石墨烯光电探测器,包括波导、石墨烯薄膜与金属电极,所述波导为侧边抛磨光纤,所述侧边抛磨光纤包括包层和纤芯,所述包层经部分抛磨处理成一抛磨区,抛磨区表面敷设有石墨烯薄膜,石墨烯薄膜表面覆盖有金属电极,其特征在于,还包括聚甲基丙烯酸甲酯薄膜,所述聚甲基丙烯酸甲酯薄膜设置在抛磨区与石墨烯薄膜之间。本专利首次将聚甲基丙烯酸甲酯薄膜与石墨烯薄膜堆叠排列的结构集成于侧边抛磨光纤上制备为光电探测器件,具备极高的光响应度,并具有极宽光谱的响应特性;与传统的基于硅基波导的探测器相比,基于光纤波导的探测器件设计方便,可以将光电探测技术直接用于光纤通信中的在线监测,具有很高的商业实用价值。
-
公开(公告)号:CN107505735A
公开(公告)日:2017-12-22
申请号:CN201710751379.3
申请日:2017-08-28
Applicant: 暨南大学
IPC: G02F1/01
Abstract: 本发明涉及光通讯器件技术领域,具体是一种基于消逝场耦合光力实现的全光光功率控制系统。一种基于消逝场耦合光力实现的全光光功率控制系统,包括纳米光纤和玻璃衬底,纳米光纤输入端连接波分复用器,波分复用器的输入端同时连接两个激光器,两个激光器分别输入泵浦光和探测光,纳米光纤下方放置玻璃衬底,玻璃衬底与纳米位移装置连接,纳米位移装置用于实现玻璃衬底以纳米量级移动,纳米光纤和玻璃衬底间的初始安装间距使探测光的消逝场与玻璃衬底耦合。本发明不需依赖电学技术,能快速响应,高效率地实现光功率控制。
-
公开(公告)号:CN107389618A
公开(公告)日:2017-11-24
申请号:CN201710448585.7
申请日:2017-06-14
Applicant: 暨南大学
IPC: G01N21/552
CPC classification number: G01N21/554
Abstract: 本发明公开了一种二氧化钛增敏的表面等离子体共振传感器及其制备方法,通过旋涂法覆盖二氧化钛纳米颗粒修饰表面等离子体共振传感芯片,所述表面等离体子体共振传感芯片是通过真空蒸镀法将金膜或银膜镀在侧边抛磨光纤抛磨面或棱镜表面制作而成。所述侧边抛磨光纤是通过光纤抛磨掉部分包层和纤芯制作而成。本发明制备简单、低廉,制得的传感器兼容性高、响应灵敏、比表面积大。
-
公开(公告)号:CN104465924A
公开(公告)日:2015-03-25
申请号:CN201410651279.X
申请日:2014-11-17
Applicant: 暨南大学
CPC classification number: H01L33/20 , H01L33/22 , H01L33/60 , H01L33/642
Abstract: 本发明公开了一种基于双界面球冠型图形结构的LED芯片,其结构自上而下依次为:蓝宝石层(3)、N型氮化镓层(4)、有源层(5)、P型氮化镓层(6)以及金属反射膜层(7),其特征在于:蓝宝石层(3)的两个表面均设置有球冠型图形结构。与现有技术相比,本发明不但提高了散热效率,而且可以提高LED芯片的光提取效率。
-
-
-
-
-
-
-
-
-