-
公开(公告)号:CN114965359B
公开(公告)日:2024-08-30
申请号:CN202210494860.X
申请日:2022-05-07
Applicant: 暨南大学
Abstract: 本发明涉及光纤传感器技术领域,公开了一种折射率光纤传感器制造方法,其特征在于,包括如下步骤:熔接:在两段单模光纤之间熔接一段空心光纤,形成单模‑空心‑单模光纤;抛磨:对熔接完成的单模‑空心‑单模光纤的空心光纤进行抛磨,抛磨至空心光纤整体的一半,空心光纤中心形成D型槽;化学处理:将抛磨完成的单模‑空心‑单模光纤浸泡在食人鱼溶液中,去除D型槽内残留的有机杂质并使槽壁表面羟基化,将浸泡完成后的单模‑空心‑单模光纤用去离子水冲洗;本发明构成了最小能在亚纳升量级样品体积下高灵敏度的折射率光纤传感器,为全光纤光流控芯片的开发和实现体外生物化学医药材料等领域的高精度、快速、超低污染检测提供了一种新方法。
-
公开(公告)号:CN117452742A
公开(公告)日:2024-01-26
申请号:CN202311439756.1
申请日:2023-10-31
Applicant: 暨南大学
IPC: G02F1/29
Abstract: 本发明提供一种异构层叠型电光晶体二维光学相控阵器件,涉及电光调控领域,包括多组层叠的电光晶体阵元,每组所述电光晶体阵元自上而下包括接地电极一、电光晶体薄板一、驱动电极组件、电光晶体薄板二和接地电极二;所述电光晶体薄板一和电光晶体薄板二的极化方向相反,所述驱动电极组件包括驱动电极一、驱动电极二两种结构不同的电极,以分别调制光束的水平和竖直传输方向。本发明通过独特的电光晶体薄板异构层叠设计构成光学相控阵,利用电光晶体的电光效应,对光束进行电调控制,实现光束二维偏转,能够解决当前光学相控阵无法同时实现大扫描角度、高激光承受功率、高调控速度、小体积低成本的问题。
-
公开(公告)号:CN114966985B
公开(公告)日:2023-10-13
申请号:CN202210622700.9
申请日:2022-06-01
Applicant: 暨南大学
Abstract: 本发明涉及光纤传感器技术领域,公开了一种光纤湿度传感器的制造方法,包括如下步骤:S1:将单模光纤加热熔融拉制成双锥形微纳光纤;S2:用掩膜法在介质衬底上刻蚀出深度为纳米量级的微型槽;S3:将双锥形微纳光纤的腰部悬空于刻蚀有微型槽的介质衬底上方;S4:用紫光胶将双锥形微纳光纤两端固定在微型槽两侧;本发明制得的光纤湿度传感器,结构简单,无需添加特殊的增敏材料,仅利用双锥形微纳光纤倏逝场与介质衬底相互耦合的方式即可实现环境湿度的传感,具有灵敏度高、响应速度快、重复性和稳定性强的优点。
-
公开(公告)号:CN114516429B
公开(公告)日:2023-10-13
申请号:CN202210167272.5
申请日:2022-02-23
Applicant: 暨南大学
Abstract: 本发明公开了一种利用真空能量涨落的真空空间推进器及推进方法,其中推进器包括推进系统、控制系统以及供电系统,所述供电系统对所述推进系统以及控制系统进行供电;所述推进系统包括旋转电机以及连接于所述旋转电机上的若干扇叶,所述扇叶表面设置有若干手性粒子,所述若干手性粒子在所述扇叶表面呈阵列分布,所述旋转电机用于带动所述扇叶以及所述手性粒子绕旋转轴高速旋转,以使所述手性粒子与真空中的热和真空能量涨落相互作用,产生驱动力。本发明利用真空零点能辅助来驱动空间推进器,解决了传统空间推进器需要携带大量工质,从而导致的发射成本高、服役寿命短以及工作空间范围受限等问题。
-
公开(公告)号:CN110376767B
公开(公告)日:2023-03-31
申请号:CN201910496256.9
申请日:2019-06-10
Applicant: 暨南大学
Abstract: 一种集成光纤的全光纤波长选择调制器与探测器,包括玻璃衬底,所述玻璃衬底上侧设置有去芯侧边抛磨光纤,所述去芯侧边抛磨光纤平坦区两侧设置有金属电极,所述去芯侧边抛磨光纤平坦区及所述金属电极上侧覆盖设置有石墨烯薄膜,所述石墨烯薄膜上层设置有聚甲基丙烯酸甲酯薄膜,本发明通过改变施加在两个金属电极两端的驱动电压,调控带有聚甲基丙烯酸甲酯薄膜的石墨烯薄膜对光纤中传输光强的吸收,从而实现波长选择的电光调制、光电探测等功能,结合了石墨烯薄膜与去芯侧边抛磨光纤波导结构,实现插入损耗低、波长选择调制、多功能化、结构简单等优点。
-
公开(公告)号:CN111612884A
公开(公告)日:2020-09-01
申请号:CN202010275949.8
申请日:2020-04-09
Applicant: 暨南大学
Abstract: 一种透射式无透镜三维显微重构方法及系统,涉及无透镜显微领域,其中,所述方法包括:获取不同采集位置所对应的图像样本并计算所述图像样本的样本振幅;对获取的所有图像样本进行图像对齐;基于图像对齐后的所有图像样本计算物平面预测光场;使用所有图像样本的样本振幅的计算结果将物平面预测光场迭代恢复至物平面实际光场。解决了如何通过无透镜系统对透明样本进行光场的三维重构的问题。
-
公开(公告)号:CN109387934A
公开(公告)日:2019-02-26
申请号:CN201811230534.8
申请日:2018-10-22
Applicant: 暨南大学
Abstract: 本专利涉及光操控技术领域,具体涉及一种基于光泳效应的微纳光纤微粒收集器。它包括衬底和光纤,光纤放置在衬底上,部分光纤置于含有待分离微粒的微粒悬浮液中,置于微粒悬浮液的部分光纤为无包层的微纳光纤,所述光纤的输入端连接激光器,所述待分离微粒为单分散聚苯乙烯微粒,所述微粒悬浮液还含有用于稀释的去离子水。旨在提高光纤收集效率,微纳光纤直接与衬底相接触,光纤结构处在衬底上,尤其是中间微纳部分处在衬底上,可控制光纤两侧大量的微粒,因此微纳光纤从纤芯辐射出大量的光强使得众多微粒在溶液中温度的变化下,产生负光泳现象从而聚集在光纤周围,达到收集微粒的目的。
-
公开(公告)号:CN108226055A
公开(公告)日:2018-06-29
申请号:CN201810114051.5
申请日:2018-02-05
Applicant: 暨南大学
Abstract: 本发明涉及传感器领域,更具体地,涉及一种光纤传感头和其制备方法及其有机气体光纤传感装置。光纤传感头包括两端固定在支架上的侧边抛磨光纤,侧边抛磨光纤的抛磨区悬空朝上,抛磨区上均匀涂覆有胆甾相液晶薄膜。本发明的光纤传感头将敏感材料胆甾相液晶薄膜涂覆到侧边抛磨光纤的抛磨平坦区构成,胆甾相液晶薄膜构成一高折射率波导,抛磨光纤纤芯中的光场与液晶波导中的高阶模相互耦合,在侧边抛磨光纤的输出光谱中可以看到多个共振峰。当有机气体渗透进液晶薄膜时,会引起液晶波导的有效折射率发生改变,导致光纤传输光谱中共振峰发生漂移,实现有机气体的传感,可以将本发明中的光纤传感头应用于有机气体的检测。
-
公开(公告)号:CN103995318A
公开(公告)日:2014-08-20
申请号:CN201410162616.9
申请日:2014-04-22
Applicant: 暨南大学
Abstract: 本发明公开了一种微纳光纤环与侧边抛磨光纤耦合的光学上下载滤波器及其制备方法,该滤波器由微纳光纤环和侧边抛磨光纤所组成,所述微纳光纤环包括环形微纳光纤及与其相连的第一端口和第二端口,所述环形微纳光纤由微纳光纤绕成环形而制成,所述微纳光纤的直径为3~10mm,环形微纳光纤的外径为300~1500mm;所述侧边抛磨光纤是在圆形普通光纤上,其中一段长度为5~30mm的区域设为抛磨区,与抛磨区相连的两端分别为第三端口和第四端口,抛磨区的部分包层被去除,抛磨区的横截面为“D”型,抛磨面与纤芯界面的距离为1~10μm,环形微纳光纤与抛磨面相接触。本发明具有性能稳定、制作简单、成本低廉、结构紧凑等优点。
-
公开(公告)号:CN114966985A
公开(公告)日:2022-08-30
申请号:CN202210622700.9
申请日:2022-06-01
Applicant: 暨南大学
Abstract: 本发明涉及光纤传感器技术领域,公开了一种光纤湿度传感器的制造方法,包括如下步骤:S1:将单模光纤加热熔融拉制成双锥形微纳光纤;S2:用掩膜法在介质衬底上刻蚀出深度为纳米量级的微型槽;S3:将双锥形微纳光纤的腰部悬空于刻蚀有微型槽的介质衬底上方;S4:用紫光胶将双锥形微纳光纤两端固定在微型槽两侧;本发明制得的光纤湿度传感器,结构简单,无需添加特殊的增敏材料,仅利用双锥形微纳光纤倏逝场与介质衬底相互耦合的方式即可实现环境湿度的传感,具有灵敏度高、响应速度快、重复性和稳定性强的优点。
-
-
-
-
-
-
-
-
-