-
公开(公告)号:CN110457860A
公开(公告)日:2019-11-15
申请号:CN201910778849.4
申请日:2019-08-22
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F17/50
Abstract: 本申请涉及一种网格的自动生成方法、装置、设备和存储介质。该方法包括:根据所述当前部件的几何参数,生成所述当前部件的二维贴体网格,沿所述当前部件的展向或周向对所述二维贴体网格进行插值,得到所述当前部件的三维贴体网格;根据所述当前部件的三维贴体网格与相邻部件的三维贴体网格,确定所述当前部件的三维贴体网格中每个网格的属性信息,输出包含网格的属性信息的所述当前部件的三维贴体网格;其中,所述当前部件为所述高升力飞行器构型中的任意一个部件。在整个高升力飞行器构型的网格的生成过程中,高升力飞行器构型的每个部件的网格均由计算机设备自动生成,不需要人工手动进行网格的划分,大大提高了网格的生成效率。
-
公开(公告)号:CN112231846B
公开(公告)日:2024-04-12
申请号:CN202011217622.1
申请日:2020-11-04
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/20 , G06F113/28
Abstract: 本发明公开了一种飞机挂架网格生成及投影方法、装置、设备和存储介质,其中,该方法包括:沿目标飞机挂架部件的横截面确定至少两组翼型几何数据点;根据所述翼型几何数据点生成计算网格并根据所述目标飞机挂架部件的相交部件变换所述计算网格;将所述计算网格投影到所述目标飞机挂架部件的几何表面以生成投影网格点;根据所述投影网格点在所述目标飞机挂架部件的投影位置标定边界条件。本发明实施例,通过多组翼型几何数据点实现了计算网格的自动生成,根据相交部件和投影网格,避免不同部件的网格间存在间隙,提高了计算网格的生成质量,增强了流场特性分析的准确性。
-
公开(公告)号:CN112231847B
公开(公告)日:2024-04-02
申请号:CN202011219054.9
申请日:2020-11-04
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/23 , G06F30/27 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种转捩位置确定方法、装置、电子设备及存储介质。该方法包括:根据无湍流模型处理流场压力数据,得到流场信息;将所述流场信息转换为预设的数据结构并输入至预测网络模型,以获得流场压力数据,所述预测结果包括扰动波幅值放大系数和扰动波频率的关系;根据所述扰动波幅值放大系数和扰动波频率的关系确定转捩位置。上述技术方案利用预测网络模型可以准确预测扰动波幅值放大系数和扰动波频率的关系,并且降低计算量,在此基础上根据扰动波幅值放大系数和扰动波频率的关系确定转捩位置,提高了确定转捩位置的准确性和计算效率。
-
公开(公告)号:CN112347561B
公开(公告)日:2024-05-28
申请号:CN202011249231.8
申请日:2020-11-10
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/23 , G06F113/28 , G06F119/14
Abstract: 本申请涉及一种飞行器的静气动弹性分析方法、装置、设备和存储介质,应用于爬升或着陆场景下的高升力飞行器构型。该方法包括:生成目标部件中各组件的三维贴体网格;分别对各组件进行定常流场分析,得到产生在各组件上的气动载荷;根据各组件上的气动载荷,确定各组件的结构变形量;根据各组件的结构变形量,对各组件的气动表面网格和气动空间网格进行变形,并在确定各组件的静气动弹性分析达到预设的收敛条件时,输出各组件的分析结果。该方法能够全流程自动化地实现低速高升力飞行器构型的静气动弹性分析,简化了低速高升力飞行器构型的静气动弹性分析的复杂度,提高了分析效率。同时,也提高了分析结果的准确性。
-
公开(公告)号:CN112347561A
公开(公告)日:2021-02-09
申请号:CN202011249231.8
申请日:2020-11-10
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/23 , G06F113/28 , G06F119/14
Abstract: 本申请涉及一种飞行器的静气动弹性分析方法、装置、设备和存储介质,应用于爬升或着陆场景下的高升力飞行器构型。该方法包括:生成目标部件中各组件的三维贴体网格;分别对各组件进行定常流场分析,得到产生在各组件上的气动载荷;根据各组件上的气动载荷,确定各组件的结构变形量;根据各组件的结构变形量,对各组件的气动表面网格和气动空间网格进行变形,并在确定各组件的静气动弹性分析达到预设的收敛条件时,输出各组件的分析结果。该方法能够全流程自动化地实现低速高升力飞行器构型的静气动弹性分析,简化了低速高升力飞行器构型的静气动弹性分析的复杂度,提高了分析效率。同时,也提高了分析结果的准确性。
-
公开(公告)号:CN112231847A
公开(公告)日:2021-01-15
申请号:CN202011219054.9
申请日:2020-11-04
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/23 , G06F30/27 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种转捩位置确定方法、装置、电子设备及存储介质。该方法包括:根据无湍流模型处理流场压力数据,得到流场信息;将所述流场信息转换为预设的数据结构并输入至预测网络模型,以获得流场压力数据,所述预测结果包括扰动波幅值放大系数和扰动波频率的关系;根据所述扰动波幅值放大系数和扰动波频率的关系确定转捩位置。上述技术方案利用预测网络模型可以准确预测扰动波幅值放大系数和扰动波频率的关系,并且降低计算量,在此基础上根据扰动波幅值放大系数和扰动波频率的关系确定转捩位置,提高了确定转捩位置的准确性和计算效率。
-
公开(公告)号:CN119026246A
公开(公告)日:2024-11-26
申请号:CN202411201488.4
申请日:2024-08-29
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/28 , G06F111/04 , G06F113/08 , G06F119/14
Abstract: 本说明书实施例公开了一种基于物理约束的机身类部件参数化设计方法,所述方法包括:获取目标部件的初始几何外形,确定所述初始几何外形的分段信息;其中,所述目标部件为机身类部件;根据所述分段信息确定所述目标部件的物理约束信息以及设置所述目标部件的基本参数;根据所述物理约束信息和基本参数,利用基于NURBS方法及超椭圆曲线的几何参数化设计方法生成所述目标部件的设计外形。
-
公开(公告)号:CN116401907A
公开(公告)日:2023-07-07
申请号:CN202310182225.2
申请日:2023-02-20
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/23 , G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本申请提供了一种风洞试验数据静气弹修正方法、装置、设备及存储介质,涉及航空风洞试验技术领域,用于减少计算过程中所占用的计算机内存,并提高数据转换效率。方法主要包括:基于三维非结构化流体网格,通过多进程对飞机风洞试验模型基于RANS方程并行流体力学数值模拟,得到飞机风洞试验模型表面的气动载荷数据;根据二维非结构化网格的表面气动网格点与几何非线性结构有限元模型中梁单元的映射关系以及载荷传输定理,将飞机风洞试验模型表面的气动载荷数据插值到几何非线性结构有限元模型相应的加载节点上;根据飞机风洞试验模型变形量和所述气动力差值,得到修正后的飞机风洞试验模型气动力。
-
公开(公告)号:CN112231846A
公开(公告)日:2021-01-15
申请号:CN202011217622.1
申请日:2020-11-04
Applicant: 中国商用飞机有限责任公司北京民用飞机技术研究中心 , 中国商用飞机有限责任公司
IPC: G06F30/15 , G06F30/20 , G06F113/28
Abstract: 本发明公开了一种飞机挂架网格生成及投影方法、装置、设备和存储介质,其中,该方法包括:沿目标飞机挂架部件的横截面确定至少两组翼型几何数据点;根据所述翼型几何数据点生成计算网格并根据所述目标飞机挂架部件的相交部件变换所述计算网格;将所述计算网格投影到所述目标飞机挂架部件的几何表面以生成投影网格点;根据所述投影网格点在所述目标飞机挂架部件的投影位置标定边界条件。本发明实施例,通过多组翼型几何数据点实现了计算网格的自动生成,根据相交部件和投影网格,避免不同部件的网格间存在间隙,提高了计算网格的生成质量,增强了流场特性分析的准确性。
-
-
-
-
-
-
-
-