基于稀疏约束空-频域联合学习的波场数值频散压制方法

    公开(公告)号:CN114065595A

    公开(公告)日:2022-02-18

    申请号:CN202111501938.8

    申请日:2021-12-09

    Abstract: 本发明涉及的是基于稀疏约束空‑频域联合学习的波场数值频散压制方法,它包括:训练数据集预处理;样本标签准备;卷积核稀疏化准备;设计联合学习模型G的网络结构;设计损失函数;训练并保存网络模型;测试网络模型性能。通过傅立叶变换将波场数据变换至频率域,获得频域波场的纹理特征;将用低价有限差分法对波动方程进行求解所得到的高频散波场数据作为输入,高阶有限差分法所得到的无频散的空域与频域特征作为标签;构建空间域与频率域联合深度学习网络结构;利用波场数据的稀疏性引入稀疏约束对卷积核进行稀疏化,本发明充分利用波场特征,有效压制数值频散问题,得到高精度、高质量的波场数据。

Patent Agency Ranking