-
公开(公告)号:CN114239403A
公开(公告)日:2022-03-25
申请号:CN202111550263.6
申请日:2021-12-17
Applicant: 东北大学
IPC: G06F30/27 , G06Q50/00 , G06F119/02
Abstract: 本发明提供一种基于机器学习构建的社交网络影响最大化确定方法,属于社交网络影响最大化技术领域;首先获取社交网络数据集并对社交网络数据集进行预处理,然后创建基于独立联级传播模型的最大化求解模型,包括多搜索模式粒子群,学习自动机和局部搜索机;最后给定一个社交网络数据集,利用构建的求解模型对这个社交网络的种子集进行求解;粒子群的应用实现了问题求解的智能性,降低了问题的复杂度;学习自动机的引入实现了粒子群的多搜索模式,解决了对于解集空间探索失衡且模式单一的问题;局部搜索机用于探索邻居解,有效加速了优化算法的收敛速度。