一种基于级联神经网络的文字检测方法、装置及存储介质

    公开(公告)号:CN112348015A

    公开(公告)日:2021-02-09

    申请号:CN202011238231.8

    申请日:2020-11-09

    Abstract: 本发明公开了一种基于级联神经网络的文字检测方法、装置及存储介质,该方法通过收集样本,并对样本进行处理生成数据集;搭建第一全卷积网络,通过数据集对第一全卷积网络进行训练至网络收敛,并通过训练后的第一全卷积网络对数据集进行推理,获得回归结果;搭建第二全卷积网络,通过回归结果对第二全卷积网络进行训练至网络收敛;将待验证图片输入第一全卷积网络,若第一全卷积网络判断在滑窗范围内存在文字,则裁剪下滑窗范围内的区域做双线性插值尺度变换并输入第二全卷积网络,通过第二全卷积网络判断区域是否为文字区域。该方法具有更好的泛化性能,并能够在保证检测准确率与召回率的同时,降低模型大小,从而提升文字检测算法性能。

    一种人脸模型精度矫正方法、装置及存储介质

    公开(公告)号:CN112183492A

    公开(公告)日:2021-01-05

    申请号:CN202011222677.1

    申请日:2020-11-05

    Abstract: 本发明公开了一种人脸模型精度矫正方法、装置及存储介质,分别采用包含有第一人脸检测算法的第一人脸识别系统和包含有第二人脸检测算法的第二人脸识别系统对同一个数据集进行人脸图像提取,获取目标样本对;以人脸识别训练数据集作为训练集通过微调超参数并执行数据增强变换方案对第一人脸识别系统中的人脸特征提取模型进行训练;将第一人脸识别系统作为学生网络,经过以上步骤训练后的人脸特征提取模型为教师网络,利用目标样本对通过知识蒸馏对学生网络进行训练,知识蒸馏采用异质同源样本自蒸馏结构;将第二人脸检测算法结合经过以上步骤训练后的学生网络形成第三人脸识别系统。该方法高速、有效,简化了人脸检测算法更换后精度矫正的全流程。

    一种特殊服饰检测方法、终端设备及存储介质

    公开(公告)号:CN112149739A

    公开(公告)日:2020-12-29

    申请号:CN202011019291.0

    申请日:2020-09-25

    Abstract: 本发明涉及一种特殊服饰检测方法、终端设备及存储介质,该方法中包括:采集包含特殊服饰的图片组成训练集;通过训练集对全卷积神经网络模型和卷积神经网络分类模型进行分别训练;获取待检测图片;根据训练后的全卷积神经网络模型对待检测图片中的特殊服饰所在区域进行初步定位;根据初步定位的特殊服饰所在区域从待检测图片中截取候选区域;通过训练后的卷积神经网络分类模型对候选区域对应的图片进行分类,得到待检测图片对应的特殊服饰的类型。本发明使用最新的人工智能技术,在不降低或极小降低速度的前提下充分提高了特殊服装的检测准确率。

    一种基于AR眼镜的人脸识别方法和系统

    公开(公告)号:CN111783674A

    公开(公告)日:2020-10-16

    申请号:CN202010628541.4

    申请日:2020-07-02

    Abstract: 本发明给出了一种基于AR眼镜的人脸识别方法和系统,包括在AR眼镜上部署第一人脸特征库以及用于人脸识别的第一压缩神经网络模型,并利用AR眼镜上的图像采集终端实时抓拍人脸图像;响应于AR眼镜未接入网络,利用压缩神经网络模型进行人脸图像的人脸识别;响应于AR眼镜与移动终端建立联系,将人脸图像传输至移动终端,并利用移动终端上部署的第二压缩神经网络模型进行人脸图像的人脸识别;响应于AR眼镜接入网络,将人脸图像传输至后台服务器,并利用后台服务器上部署的深度学习的神经网络模型进行人脸图像的人脸识别;在AR眼镜上示出人脸识别的匹配结果。该基于AR眼镜的人脸识别方法和系统可根据不同使用环境切换工作模式,快速完成识别工作。

    密码字典生成方法及计算机可读存储介质

    公开(公告)号:CN107579821B

    公开(公告)日:2020-04-28

    申请号:CN201710851440.1

    申请日:2017-09-19

    Abstract: 本发明公开了一种密码字典生成方法及计算机可读存储介质,方法包括:收集密码集;生成测试集;通过递归神经网络模型对当前的密码集进行训练,得到字典模型;根据字典模型生成字典;根据测试集,得到当前的密码集的命中率;随机修改当前的密码集,得到新的密码集;通过递归神经网络模型对新的密码集进行训练,得到新的字典模型;根据新的字典模型生成新的字典;根据测试集,得到新的密码集的命中率;若新的密码集的命中率大于当前的密码集的命中率,则令更新次数加一,并将新的密码集作为当前的密码集;当更新次数达到预设的第一次数时,根据当前的密码集对应的字典模型,生成密码字典。本发明最终生成的密码字典可提高密码恢复的成功率。

    一种基于半监督的图像分类方法、终端设备及存储介质

    公开(公告)号:CN114373097B

    公开(公告)日:2024-09-27

    申请号:CN202111532343.9

    申请日:2021-12-15

    Abstract: 本发明涉及一种基于半监督的图像分类方法、终端设备及存储介质,该方法中包括:S1:采集已标注图像组成训练集;S2:构建图像分类模型,通过训练集对图像分类模型进行训练,将训练后的模型作为初始模型;S3:采集未标注图像输入初始模型,并将初始模型输出的类别标注为各未标注图像的伪标签后,添加至训练集内;S4:在基础模型对应的分类网络之后添加高斯混合模型组成错误分类识别模型;S5:通过训练集对错误分类识别模型进行训练,基于训练后的错误分类识别模型中的分类网络构建最终分类模型;S6:通过最终分类模型对图像进行分类。本发明不仅可以得到更加准确的类标,而且提升了在带噪声样本集训练的模型的准确率。

Patent Agency Ranking