一种人脸模型精度矫正方法、装置及存储介质

    公开(公告)号:CN112183492A

    公开(公告)日:2021-01-05

    申请号:CN202011222677.1

    申请日:2020-11-05

    Abstract: 本发明公开了一种人脸模型精度矫正方法、装置及存储介质,分别采用包含有第一人脸检测算法的第一人脸识别系统和包含有第二人脸检测算法的第二人脸识别系统对同一个数据集进行人脸图像提取,获取目标样本对;以人脸识别训练数据集作为训练集通过微调超参数并执行数据增强变换方案对第一人脸识别系统中的人脸特征提取模型进行训练;将第一人脸识别系统作为学生网络,经过以上步骤训练后的人脸特征提取模型为教师网络,利用目标样本对通过知识蒸馏对学生网络进行训练,知识蒸馏采用异质同源样本自蒸馏结构;将第二人脸检测算法结合经过以上步骤训练后的学生网络形成第三人脸识别系统。该方法高速、有效,简化了人脸检测算法更换后精度矫正的全流程。

    模型压缩方法和装置
    2.
    发明授权

    公开(公告)号:CN112418405B

    公开(公告)日:2022-08-19

    申请号:CN202011412659.X

    申请日:2020-12-03

    Abstract: 本申请实施例公开了模型压缩方法和装置。该方法的一具体实施方式包括:对于预设的样本图像集合中的每个样本图像,将该样本图像输入预设的基础图像识别模型,得到至少一个目标层分别对应的通道集合;基于通道集合,确定每个目标层分别对应的初始通道重要度向量;基于初始通道重要度向量,确定每个目标层分别对应的通道重要度向量;对于至少一个目标层中的每个目标层,基于该目标层对应的通道重要度向量,从该目标层中确定非重要通道并删除;将删除非重要通道后的模型作为子模型并对子模型进行训练。该实施方式实现了在不影响图像识别精度的情况下,对模型的体积进行有效的压缩,从而有助于节约模型占用的存储空间,并提高模型处理数据的效率。

    一种人脸模型精度矫正方法、装置及存储介质

    公开(公告)号:CN112183492B

    公开(公告)日:2022-07-15

    申请号:CN202011222677.1

    申请日:2020-11-05

    Abstract: 本发明公开了一种人脸模型精度矫正方法、装置及存储介质,分别采用包含有第一人脸检测算法的第一人脸识别系统和包含有第二人脸检测算法的第二人脸识别系统对同一个数据集进行人脸图像提取,获取目标样本对;以人脸识别训练数据集作为训练集通过微调超参数并执行数据增强变换方案对第一人脸识别系统中的人脸特征提取模型进行训练;将第一人脸识别系统作为学生网络,经过以上步骤训练后的人脸特征提取模型为教师网络,利用目标样本对通过知识蒸馏对学生网络进行训练,知识蒸馏采用异质同源样本自蒸馏结构;将第二人脸检测算法结合经过以上步骤训练后的学生网络形成第三人脸识别系统。该方法高速、有效,简化了人脸检测算法更换后精度矫正的全流程。

    模型压缩方法和装置
    4.
    发明公开

    公开(公告)号:CN112418405A

    公开(公告)日:2021-02-26

    申请号:CN202011412659.X

    申请日:2020-12-03

    Abstract: 本申请实施例公开了模型压缩方法和装置。该方法的一具体实施方式包括:对于预设的样本图像集合中的每个样本图像,将该样本图像输入预设的基础图像识别模型,得到至少一个目标层分别对应的通道集合;基于通道集合,确定每个目标层分别对应的初始通道重要度向量;基于初始通道重要度向量,确定每个目标层分别对应的通道重要度向量;对于至少一个目标层中的每个目标层,基于该目标层对应的通道重要度向量,从该目标层中确定非重要通道并删除;将删除非重要通道后的模型作为子模型并对子模型进行训练。该实施方式实现了在不影响图像识别精度的情况下,对模型的体积进行有效的压缩,从而有助于节约模型占用的存储空间,并提高模型处理数据的效率。

Patent Agency Ranking