-
公开(公告)号:CN107607410A
公开(公告)日:2018-01-19
申请号:CN201710968423.6
申请日:2017-10-18
Applicant: 吉林大学
Abstract: 本发明涉及一种便携式变温原位拉压测试装置,属于材料力学性能测试领域。精密拉伸/压缩载荷驱动单元与测试平台基座连接,精密旋转加载驱动单元与夹具体Ⅰ、Ⅱ相连,变形信号检测及控制单元由位移传感器通过位移传感器支撑座与基座架连接,夹持单元由夹具体Ⅰ、Ⅱ与精密移动平台刚性连接,与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ套接,温度加载单元固定在基座架上。结构紧凑、精巧,方便组装与拆卸,整机质量轻、测量精度高、实时数据采集,可在被测试件旋转过程中进行实时观察,如对材料的裂纹萌生、裂纹扩展和材料的失效断裂过程等进行原位监测,进而对材料在可变温度复杂载荷模式加载作用下的微观力学行为、内部变形损伤机制进行深入研究。
-
公开(公告)号:CN107537065A
公开(公告)日:2018-01-05
申请号:CN201710559630.6
申请日:2017-07-11
Applicant: 吉林大学
Abstract: 本发明涉及一种基于原位测试的高熵合金人工关节耦合仿生构建方法,属于材料力学性能测试和生物医学工程领域。通过微纳米刻划测试研究高熵合金区的磨粒磨损行为,采用多轴应力疲劳测试研究合金-骨水泥-髓腔复合界面的损伤机理,借助断层扫描分析等对界面缺陷演化行为开展实时监测,从而获取人工关节表面的磨损与疲劳失效机制,根据生物模本对裂纹形核与扩展的阻滞效应,在人工关节头表面激光熔覆加工制备出具有非光滑形态、非均质结构和异质材料的高熵合金涂层,结合具有多孔梯度特性的钴铬钼合金的增材制造,实现增韧、减阻、抗疲劳和耐磨等功能特性,为新型人工关节提供新颖的设计与制备方法。
-
公开(公告)号:CN105720859B
公开(公告)日:2017-10-10
申请号:CN201610279674.9
申请日:2016-05-03
Applicant: 吉林大学
Abstract: 本发明涉及一种基于仿生触角和热膨胀的宏微驱动旋转平台,属于精密驱动领域。宏观压电驱动单元分别通过内包络式柔性铰链和仿生楔形触角的弹性变形对柱形转动体进行顺时针宏观驱动,微观热膨胀驱动单元通过高温陶瓷加热棒的热传导在仿生楔形触角的间歇处产生可控的热膨胀变形,进而驱动触角产生微小线性位移,实现对柱形转动体的微观驱动。柱形转动体以过盈配合方式内嵌于陶瓷球轴承的转动体中,且其凹槽内嵌入式安装有刚性平面反光板,用于非接触式光学位移测量系统对柱形转动体旋转变形的定量检测。优点在于:结构紧凑,可满足微纳操作、微纳加工、精密光学、航天及医学工程等领域对微纳米级精密驱动与定位的需求。
-
公开(公告)号:CN104615642B
公开(公告)日:2017-09-29
申请号:CN201410778037.7
申请日:2014-12-17
Applicant: 吉林大学
Abstract: 一种基于局部邻域约束的空间验证的错误匹配检测方法,属于图像识别领域。本发明的目的是通过局部区域内匹配特征对的数量,定义该匹配特征的局部权重,进而过滤不相关的匹配特征对,最后计算相关匹配特征是否满足一致几何变换的基于局部邻域约束的空间验证的错误匹配检测方法。本发明的步骤是:服务器中图像库图像预先处理,用尺度不变特征变换计算查询图像的SIFT特征,然后使用该词袋模型同样生成一个全局直方图,再使用基于局部区域加权空间约束的错误匹配检测方法,去除错误的匹配特征,获得最终几何得分,最后对初始检索结果重新排序,得到最终的检索结果。本发明减少了几何验证阶段特征的数量,降低了几何验证阶段的计算时间;同时也提高了检索的准确度。
-
公开(公告)号:CN107134945A
公开(公告)日:2017-09-05
申请号:CN201710458300.8
申请日:2017-06-16
Applicant: 吉林大学
IPC: H02N2/04
CPC classification number: H02N2/04
Abstract: 本发明公开了一种单Ω形压电直线驱动器,属于精密压电驱动领域。包括基座(1)、Ω形定子(2)、动子(3),其中Ω形定子(2)固定安装在基座(1)上,Ω形定子(2)与动子(3)弹性接触;所述的Ω形定子(2)包括刚性固定座(2‑1)、Ω形振子(2‑2)、弹性曲梁(2‑3),将Ω形振子(2‑2)和弹性曲梁(2‑3)固定到刚性固定座(2‑1)上;所述的Ω形振子(2‑2)包括Ω形弹性基板(2‑2‑1)、压电双晶片1(2‑2‑2)、压电双晶片2(2‑2‑3)、弧形驱动足(2‑2‑4);给Ω形振子(2‑2)施加驱动电信号,使弧形驱动足(2‑2‑4)产生x向往复运动形变,使弹性曲梁(2‑3)产生弯曲变形,改变正压力以改变摩擦力,定子(2)驱动动子(3)向x向运动。本发明优点有结构简单紧凑,行程大,精度高,负载大,预紧力可调,可用于微纳加工、航天航空、精密光学等领域。
-
公开(公告)号:CN107104608A
公开(公告)日:2017-08-29
申请号:CN201710469107.4
申请日:2017-06-20
Applicant: 吉林大学
Abstract: 本发明涉及一种基于粘滑惯性的压电精密直线驱动平台,属于精密驱动领域。包括驱动单元、运动单元和预紧单元,其中,所述驱动单元由压电叠堆A、压电叠堆B、柔性铰链总体以及可更换驱动触头A、可更换驱动触头B组成,为运动单元提供动力来源;所述运动单元由导轨及滑块组成,提供驱动平台的位移输出;所述预紧单元由预紧螺栓A、预紧螺栓B、预紧螺栓C组成,调节驱动单元与运动单元之间的预紧力。优点在于:结构紧凑,速度可调,运动行程大,定位精度高,可靠性强,适宜于应用在对空间尺寸要求严格、对运动行程及定位精度都有一定要求的运动控制场合。
-
公开(公告)号:CN106877736A
公开(公告)日:2017-06-20
申请号:CN201710212091.9
申请日:2017-04-01
Applicant: 吉林大学
Abstract: 本发明涉及一种基于压电纤维的粘滑惯性旋转驱动器,属于微纳精密驱动领域。由基座(1)、预紧力加载平台(2)、定子(3)、转子(4)组成,其中预紧力加载平台(2)和转子(4)安装在基座(1)上,定子(3)固定在预紧力加载平台(2)上并与转子(4)保持弹性接触;所述的定子(3)由柔顺机构(3‑1)、压电纤维I(3‑2)、压电纤维II(3‑3)组成;给压电纤维施加驱动电信号,压电纤维I(3‑2)和压电纤维II(3‑3)相互配合,使柔顺机构(3‑1)形成驱动行波,驱动转子(4)转动。本发明优点是:结构简单、精度高、行程大,可用于微纳加工、精密光学、航空航天等领域。
-
公开(公告)号:CN105067431B
公开(公告)日:2017-05-31
申请号:CN201510423598.X
申请日:2015-07-17
Applicant: 吉林大学
Abstract: 本发明涉及一种拉伸‑剪切预载荷原位压痕测试装置及方法,属于精密科学仪器领域。机械传动模块由伺服电机、两级蜗轮蜗杆和丝杠及丝杠螺母组成,可将电机的转动转化为准静态速率下的直线运动,实现拉伸过程;任意角度拉伸剪切复合加载模块通过螺栓的摩擦力将可动装置压紧在底座上,通过改变可动装置的角度即可改变试件的载荷受力倾角;悬臂压痕模块通过安装于悬臂梁上方并与其平行的压电叠堆实现,当压电叠堆通电产生致动时挤压悬臂梁迫使其弯曲从而来实现压痕。在进行拉剪复合试验时将装置置于显微镜下即可进行原位观测。本发明专利原理可靠,结构紧凑,具有较高的使实用价值,可精确地进行拉伸剪切压痕多载荷材料力学试验与原位观测。
-
公开(公告)号:CN106706440A
公开(公告)日:2017-05-24
申请号:CN201611223705.5
申请日:2016-12-27
Applicant: 吉林大学
Abstract: 本发明涉及一种高温双轴同步拉伸力学性能测试仪器及测试方法,属于精密科学仪器领域。装置由一个交流伺服电动机带动三个相互正交的锥齿轮,进而实现X轴、Y轴的等速同步拉伸,亦可实现X轴、Y轴的非等速拉伸测试,还可以实现沿X轴方向的单轴拉伸。高温加热炉配有光学视窗,可与光学显微镜集成使用,实现对材料变温拉伸测试过程中的微观力学行为与损伤机制的动态原位监测。通过创新提出的新颖结构,有效的解决了双轴拉伸难以实现同步加载的难题,同时又兼具非等速拉伸加载以及单轴拉伸等功能,结构紧凑、占地面积小,便于集成和控制,具有良好的应用前景,对于高温条件下材料在承受复杂应力状态时力学性能的测试研究具有十分重要的意义。
-
公开(公告)号:CN104494818B
公开(公告)日:2016-12-07
申请号:CN201410699027.4
申请日:2014-11-28
Applicant: 吉林大学
IPC: B64C27/08 , B64D47/00 , B62D57/028 , B60F5/02
Abstract: 本发明涉及一种四旋翼两栖机器人,属于机器人领域。包括旋翼飞行器机构、控制机构、地面行走机构和信息采集机构,其中飞行器机构是由旋翼、电机a、b、c、d和机架组成;控制机构包括一个控制盒,内部装有高蓄能电池、小型PLC控制系统及模拟量模块;信息采集机构是由机载部分和无线传输系统组成,机载部分包括微型摄像头及视频发射器;地面行走机构通过四个足部两段化设计,实现快速平移和转向;照明设备由两个钠灯组成。优点在于:载重大,材质轻,体积小,成本较低,不易发现。智能强度高,多功能,多用途,两栖操作性强。可以使每一个行走结构都自由进行旋转和驱动,地面行走结构更加快速有效,有利于地面快速行动。实用性强。
-
-
-
-
-
-
-
-
-