-
公开(公告)号:CN107195412B
公开(公告)日:2019-04-26
申请号:CN201710368285.8
申请日:2017-05-23
Applicant: 北京科技大学
Abstract: 本发明提供一种3D打印用钕铁硼粉末料浆的制备及应用方法,以及使用这种钕铁硼料浆3D打印成形和通过烧结得到最终钕铁硼磁体,属于3D打印领域。本发明是在有机溶剂、防氧化剂和有机粘结剂的保护下将氢化钕铁硼磁粉球磨细化,通过控制各组份的数量,得到固含量、粘度和粒度适合于3D打印的钕铁硼粉末料浆。本发明的钕铁硼粉末料浆悬浮性好,稳定性好,粘度适合,并且这种料浆制备方法成本低,效率高,工艺稳定,非常适合于3D打印成形。3D打印成形的坯体强度好,尺寸和形状精确。烧结后的钕铁硼磁体达到常规工艺的磁体性能。
-
公开(公告)号:CN109055790A
公开(公告)日:2018-12-21
申请号:CN201810934555.1
申请日:2018-08-16
Applicant: 北京科技大学广州新材料研究院
Abstract: 本发明公开了一种镁和镁合金的晶粒细化方法,包括以下步骤:(1)制备含锆基非晶合金的中间载体:将长条状的锆基非晶合金剪成较小的碎片状。此外利用合金切割机将高纯镁锭切割成小块的镁合金,收集切割中所产生的镁屑,收集后用无水乙醇洗净放置于阴凉处阴干。将锆基非晶合金碎片按照质量百分比为20~40%和质量百分比为60~80%的镁切屑充分混合后压制成型;(2)熔化Mg或Mg合金,加入含锆基非晶合金的中间载体并搅拌;(3)静置保温后出炉浇铸。本发明在晶粒细化方法的成本低廉,且工艺简单的条件下,具有加入量易于控制,无污染物排出,晶粒细化效率高,晶粒细化效果稳定,处理时间短等优点。
-
公开(公告)号:CN108893636A
公开(公告)日:2018-11-27
申请号:CN201810677268.7
申请日:2018-06-27
Applicant: 北京科技大学
Abstract: 一种高导热各向同性石墨球增强铝基复合材料的制备方法,属于金属材料领域。铝基复合材料由纯铝粉末、石墨球组成,纯铝粉末体积分数为40%-80%,石墨球体积分数为20%-60%。生产工艺步骤为:先将相应体分配比的纯铝粉末和石墨球粉末进行混合,然后将混合粉末一起放入石墨模具进行放电等离子烧结,得到具有高体积分数、高热导、高致密度和近似各向同性的石墨球-铝基复合材料。本发明制备出热导率近似各向同性的石墨球-铝基复合材料,且制备的复合材料致密度高、组织分布均匀,可实现大批量生产、生产成本低、实用化程度高。该材料热导率近似各向同性,XY方向可达到227.61W·m-1·K-1,Z方向能达到187.27W·m-1·K-1。热膨胀系数室温条件下在6.4-10.6×10-6K-1之间波动,致密度达到98%以上。
-
公开(公告)号:CN107337901A
公开(公告)日:2017-11-10
申请号:CN201710434105.1
申请日:2017-06-09
Applicant: 北京科技大学广州新材料研究院
IPC: C08L63/00 , C08L63/02 , C08L15/00 , C08K13/02 , C08K3/08 , C08K5/544 , C08K5/5435 , C08K5/10 , C08K5/1515 , C09D163/00 , C09D5/10 , C09D7/12
Abstract: 本发明公开了高分子合金聚合物和涂料及其制备方法。该高分子合金聚合物主要由以下重量份的原料制备而成:金属或合金粉末20~50份、环氧树脂10~30份、活性稀释剂10~50份、催化剂1~8份、增韧剂1~8份、偶联剂1~15份、纳米材料分散剂1~5份、防沉剂0.1~2份;所述金属或合金粉末选自不锈钢粉、钛粉、氢化钛粉、钛合金粉、铝粉、铝合金粉中的至少一种;所述活性稀释剂为苄基缩水甘油醚和/或烯丙基缩水甘油醚;所述催化剂为改性纳米氧化铝。以该高分子合金聚合物为基料制备高分子合金涂料,既可部分替代基体树脂使用,延长基体材料在苛刻环境中的服役年限,解决工业腐蚀的难题,又能有效降低生产成本。
-
公开(公告)号:CN107312959A
公开(公告)日:2017-11-03
申请号:CN201710450684.9
申请日:2017-06-15
Applicant: 北京科技大学广州新材料研究院
CPC classification number: C22C26/00 , C22C1/1015 , C22C1/1036 , C22C21/02 , C22C2001/1073
Abstract: 本发明提供了一种制备具有高体积分数金刚石/铝复合材料的方法,采用粉末冶金模压技术制备出金刚石预成形坯,将成形剂脱除并进行预烧结制备出具有一定孔隙度的金刚石骨架,然后通过在Al-Si合金中添加Al-10Sr变质剂,最后将变质后的Al-Si合金熔液渗入到金刚石骨架的孔隙中,从而制备出高体积分数的Diamond/Al复合材料。本发明的优点在于能够制备出组织均匀、致密度高的高体积分数Diamond/Al复合材料,制备的Diamond/Al复合材料不易潮解,产品寿命提高,使得高体积分数Diamond/Al复合材料的使用更加稳定高效。
-
公开(公告)号:CN105779819A
公开(公告)日:2016-07-20
申请号:CN201510998659.5
申请日:2015-12-28
Applicant: 北京科技大学 , 中国工程物理研究院流体物理研究所
CPC classification number: C22C14/00 , C22C1/045 , C22C1/0458 , C22C27/04
Abstract: 本发明属于中子衍射技术领域,涉及一种用于中子衍射高压腔体封垫的钼钛合金中子透明材料及其制备方法,该钼钛合金中子透明材料中钼的含量为46~56wt%,剩余为钛。这种钼钛合金中子透明材料与现有的Ti?Zr合金封垫相比,强度高,能够提高高压腔体的压力,增多高压实验样品数量;中子透射率高,中子衍射性与Ti?Zr合金相当,但对金刚石的粘附很低,高压实验后容易清洁金刚石压砧,能够延长金刚石压砧的使用寿命,降低高压实验的成本。
-
公开(公告)号:CN103170631B
公开(公告)日:2015-03-11
申请号:CN201310086534.6
申请日:2013-03-19
Applicant: 北京科技大学
Abstract: 本发明属于粉末冶金技术领域,涉及一种铌合金零件的制备方法,尤其涉及一种小尺寸、薄壁Nb-W-Mo-Zr合金零件的制备方法。该方法以经过机械合金化和等离子球化处理的微细球形Nb-W-Mo-Zr合金粉末为原料,采用注射成形的方法制备了长度不大于30mm、宽度不大于5mm、薄壁厚度不大于1mm、尺寸公差不大于0.09%、内有台阶和圆弧结构的小尺寸、薄壁Nb-W-Mo-Zr合金零件。本发明克服了传统的铌合金零件制造方法普遍存在的材料利用率低、污染大、难以制备复杂形状零部件、生产效率低等缺陷,适合大批量制备尺寸微小、形状复杂的Nb-W-Mo-Zr合金零件。
-
公开(公告)号:CN103752836A
公开(公告)日:2014-04-30
申请号:CN201410019961.7
申请日:2014-01-16
Applicant: 北京科技大学
Abstract: 本发明采用真空感应熔炼+氢化处理+等离子球化技术制备细粒径球形铌钛基合金粉末。首先采用真空感应熔炼技术制备铌钛基合金铸锭,解决纯净化熔炼的问题,设法减少非金属夹杂的数量和尺寸,并进行均匀化热处理,获得合金成分均匀的铸锭。然后对铸锭进行氢化处理,获得吸氢铌钛合金粉末。吸氢铌钛合金粉末经过筛分后进行等离子球化,在球化过程中优化输出功率、送粉速率和气流速率,避免空心粉形成,提高细粉收得率。从而得到分散性和流动性良好、粒度均匀的球形粉末。最终制备出粒径细小、成分均匀、流动性好、球化率高、氧含量低的铌钛基合金粉末。该粉末适用于注射成形、快速成形和热喷涂技术领域。
-
公开(公告)号:CN103708560A
公开(公告)日:2014-04-09
申请号:CN201310742106.4
申请日:2013-12-30
Applicant: 北京科技大学
Abstract: 本发明涉及一种纳米三氧化钨粉末的制备方法,属于粉末冶金技术领域。所述方法包括如下步骤:将饱和钨酸铵溶液加热至65-70℃,然后按次序分别加入氯化铵、酒石酸、乙二胺四丙酸和二乙醇胺,加入过程保持搅拌至完全溶解并持续搅拌1-2h;随后在保持搅拌的情况下加入硝酸形成钨酸凝胶。然后将凝胶置于加热炉中在140-150℃干燥,然后升温至340-380℃煅烧,最后球磨粉碎得到平均粒度23-28nm的三氧化钨粉末。本发明的方法反应过程平缓稳定,易于控制,制备的纳米三氧化钨颗粒细小均匀,粉末纯度高。此外,由于流程简单、易于控制,使工业化生产投资少,生产工艺简单、方便,产品成本低,便于实现工业化批量生产。
-
公开(公告)号:CN103658677A
公开(公告)日:2014-03-26
申请号:CN201310742015.0
申请日:2013-12-30
Applicant: 北京科技大学
Abstract: 本发明涉及一种纳米碳化钨粉的制备方法,包括如下步骤:将硝酸铬和偏钒酸铵用去离子水溶解,加入仲钨酸铵(APT)球磨成浆,再加入水溶性酚醛树脂(PF)继续球磨,然后喷雾干燥得到复合粉末;将前驱体粉末在低温球磨中用液氮作为球磨介质球磨,室温干燥后置于碳管炉中用氢气保护碳化,得到纳米碳化钨粉。本发明的方法通过在工艺开始端加入铬和钒元素以及加入PF,通过元素的内部抑制作用以及PF的外部包覆隔离作用,并通过液氮冷冻球磨,使生产过程容易将WC粉末颗粒尺寸稳定地保持在纳米尺度。此外,由于WC粉末制备流程简单、易于控制,使工业化生产投资少,生产工艺简单、方便,产品成本低,便于实现工业化批量生产。
-
-
-
-
-
-
-
-
-