一种数据处理方法、装置及设备
    61.
    发明公开

    公开(公告)号:CN116029441A

    公开(公告)日:2023-04-28

    申请号:CN202310090590.0

    申请日:2023-01-17

    Abstract: 本说明书实施例公开了一种数据处理方法、装置及设备,该方法包括:获取目标业务的业务数据,将该业务数据输入到预先训练的目标模型中,通过目标模型中应用于目标业务的第一子模型和前置稳定器对该业务数据进行预测,得到针对该业务数据的预测结果,目标模型中包括第一子模型和前置稳定器,第一子模型包括多个不同的网络层,前置稳定器包括一个或多个子稳定器,子稳定器设置于第一子模型的一个网络层中,且第一子模型进行模型训练后,保持第一子模型中的模型参数不变,通过对抗样本训练前置稳定器中的参数,得到训练后的目标模型,基于该业务数据的预测结果对目标业务进行业务处理。

    图像元素类别的识别方法及装置

    公开(公告)号:CN115546810B

    公开(公告)日:2023-04-11

    申请号:CN202211507954.2

    申请日:2022-11-29

    Abstract: 本说明书实施例提供一种图像元素类别的识别方法及装置,在识别方法中,从多模态的目标图像中,提取其中包含的多个文本片段,及其对应的多个边界框。针对多个边界框形成的初始集合,迭代执行若干轮次的切分操作,其中单论切分操作根据边界框的轴向投影,将本轮当前集合划分为多个子集合,并确定各个子集合的相对排序,直至得到各个边界框的排序编号,该排序编号指示各个边界框的阅读顺序。至少将多个文本片段、多个边界框及其各自的排序编号,输入类别预测模型进行识别处理,得到目标图像中包含的各个元素的类别。

    一种模型训练的方法、业务风控的方法及装置

    公开(公告)号:CN115660105A

    公开(公告)日:2023-01-31

    申请号:CN202211339182.6

    申请日:2022-10-28

    Abstract: 本说明书公开了一种模型训练的方法、业务风控的方法及装置。首先,确定预先构建的业务关系图。其次,获取业务序列数据。而后,将业务序列数据输入到待训练的预测模型中,以通过特征提取层,得到目标节点的第一序列特征,以及关联节点的第二序列特征。然后,通过注意力层,确定第一序列特征与第二序列特征之间的注意力权重,并根据注意力权重、第一序列特征以及第二序列特征,确定目标节点与关联节点之间的边的边特征。接着,将确定出的目标节点对应的节点特征以及边特征输入到决策层中,得到风险预测结果。最后,以最小化风险预测结果与标签之间的偏差为优化目标,对预测模型进行训练。本方法可以在用户执行业务过程中进行有效地业务风控。

    一种模型训练的方法、装置、存储介质及电子设备

    公开(公告)号:CN115238826B

    公开(公告)日:2022-12-27

    申请号:CN202211121861.6

    申请日:2022-09-15

    Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质及电子设备,首先获取样本业务数据以及隐私数据,将获取到的样本业务数据以及隐私数据输入到待训练的参照模型中,得到第一预测结果,以及,将样本业务数据输入到待训练的预测模型中,得到第二预测结果,以最小化第一预测结果与第二预测结果之间的偏差,以及最小化第一预测结果与样本业务数据对应的标签数据之间的偏差为优化目标,对参照模型以及预测模型进行联合训练,其中,训练后的预测模型应用于业务执行。

    建立风险识别模型的方法及对应装置

    公开(公告)号:CN115293872A

    公开(公告)日:2022-11-04

    申请号:CN202210793704.3

    申请日:2022-07-07

    Abstract: 本说明书实施例提供了一种建立风险识别模型的方法及对应装置。其中方法包括:获取利用用户的网络行为数据构建的异构网络图,异构网络图包括节点和边,节点包括行为主体和行为对象,边依据行为主体和行为对象之间的行为关系确定;对异构网络图中的边进行掩膜处理,得到掩膜子图和剩余子图;利用剩余子图和掩膜子图训练图自编码器;其中,图自编码器包括编码网络和第一解码网络;编码网络利用输入的剩余子图得到各节点的表征向量,第一解码网络利用各节点的表征向量预测被掩膜的边,训练目标包括:最小化预测结果与掩膜子图之间的差异;利用训练得到的图自编码器中的编码网络,构建风险识别模型。本申请能够提高风险识别模型的识别效果。

    建立风险识别模型的方法及对应装置

    公开(公告)号:CN115293235A

    公开(公告)日:2022-11-04

    申请号:CN202210788668.1

    申请日:2022-07-06

    Abstract: 本说明书实施例提供了一种建立风险识别模型的方法及对应装置。其中方法包括:获取利用用户的网络行为数据构建的异构网络图对应的图邻接矩阵,异构网络图包括节点和边,节点包括行为主体和行为对象,边依据行为主体和行为对象之间的行为关系确定;利用图邻接矩阵生成训练样本,以及对图邻接矩阵的特征值和/或特征向量进行扰动生成对抗样本;利用训练样本和对抗样本训练图神经网络,得到风险识别模型;其中训练目标包括:最小化图神经网络针对训练样本和对抗样本中的样本对象输出的识别结果与该样本对象被标注的标签之间的差异,样本对象包括节点或边。本申请能够有效提高风险识别模型的鲁棒性。

    一种模型的训练方法、装置及设备

    公开(公告)号:CN114241268A

    公开(公告)日:2022-03-25

    申请号:CN202111574537.5

    申请日:2021-12-21

    Abstract: 本说明书实施例公开了一种模型的训练方法、装置及设备,该方法包括:获取第一数量的第一训练样本,然后,从所述第一数量的第一训练样本中选取第二数量的第一训练样本,并分别向第二数量的第一训练样本中加入相应的噪声数据,得到所述第二数量的第二训练样本,最终,可以基于剩余的第一训练样本和所述第二数量的第二训练样本,通过预设的基于梯度的对抗攻击算法对目标模型进行训练,得到训练后的目标模型。

    数据处理方法、装置及设备

    公开(公告)号:CN114238744A

    公开(公告)日:2022-03-25

    申请号:CN202111574694.6

    申请日:2021-12-21

    Abstract: 本说明书实施例提供了一种数据处理方法、装置及设备,所述方法包括:在接收到针对第一图像的相似图像检索指令的情况下,确定与所述第一图像对应的候选图像;基于预先训练的特征提取模型,获取与所述第一图像对应的第一特征向量,与所述候选图像对应的第二特征向量,所述特征提取模型为基于第二图像、所述第二图像的标签,对由特征提取算法和度量学习算法构建的特征提取模型进行训练得到,所述第二图像的标签为基于所述第二图像的标题信息和预设聚类算法确定;基于所述第一特征向量和所述第二特征向量,确定所述候选图像中与所述第一图像对应的目标图像,并将所述目标图像确定为与所述相似图形检索指令对应的检索结果。

    多方联合训练图神经网络的方法、装置及系统

    公开(公告)号:CN114091651A

    公开(公告)日:2022-02-25

    申请号:CN202111297665.X

    申请日:2021-11-03

    Abstract: 本说明书实施例提供一种保护隐私数据的多方联合训练图神经网络的方法、装置及系统,方法包括:第一方利用图神经网络的第一参数部分,处理样本对象的第一特征部分,得到第一处理结果;利用控制器的目标公钥,对第一处理结果进行同态加密,得到第一加密结果;从第二方接收第二加密结果;基于第一加密结果和第二加密结果,及预设的损失函数,通过同态运算得到第一梯度密文;在第一梯度密文上添加对第一噪声加密的第一噪声密文,得到第一加密加噪数据;将其发送至控制器;从控制器接收对第一加密加噪数据解密后的第一加躁数据,从其中去除第一噪声,得到第一梯度明文;根据第一梯度明文,更新第一参数部分。

Patent Agency Ranking