-
公开(公告)号:CN118228255A
公开(公告)日:2024-06-21
申请号:CN202410257025.3
申请日:2024-03-06
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例公开了一种应用程序的风险检测方法、装置及设备,该方法包括:获取用于检测目标应用程序是否存在预设的经营性风险的目标数据,目标数据中至少包括用户使用目标应用程序前用户的访问日志数据;基于访问日志数据,确定用户的行为序列数据,并基于访问日志数据和行为序列数据,确定序列图结构数据;通过预先训练的编码器中的序列编码子模型对行为序列数据进行编码处理,得到行为序列数据对应的序列表征;将序列图结构数据输入到编码器中的序列图编码子模型中,以对序列图结构数据进行编码处理,得到序列图结构数据对应的序列图结构表征;基于序列表征和序列图结构表征,确定目标应用程序是否存在预设的经营性风险。
-
公开(公告)号:CN115795109A
公开(公告)日:2023-03-14
申请号:CN202211591577.5
申请日:2022-12-12
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/901
Abstract: 本说明书实施例提供了一种数据处理方法、装置及设备,所述方法包括:获取待裁剪的第一图结构数据;基于预先训练的图采样模型中的图编码网络,确定第一图结构数据中每个节点的节点表征向量;基于第一图结构数据中每个节点的节点表征向量,第一图结构数据的构建时间以及第一图结构数据中每两个具有连接关系的节点之间的时间信息,确定第一图结构数据中每两个具有连接关系的节点之间的边的边表征向量;基于预先训练的图采样模型中的采样网络,确定第一图结构数据中每两个具有连接关系的节点之间的边的采样概率;基于第一图结构数据中每两个具有连接关系的节点之间的边的采样概率,对第一图结构数据进行裁剪处理,得到裁剪后的第一图结构数据。
-
公开(公告)号:CN115660105A
公开(公告)日:2023-01-31
申请号:CN202211339182.6
申请日:2022-10-28
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书公开了一种模型训练的方法、业务风控的方法及装置。首先,确定预先构建的业务关系图。其次,获取业务序列数据。而后,将业务序列数据输入到待训练的预测模型中,以通过特征提取层,得到目标节点的第一序列特征,以及关联节点的第二序列特征。然后,通过注意力层,确定第一序列特征与第二序列特征之间的注意力权重,并根据注意力权重、第一序列特征以及第二序列特征,确定目标节点与关联节点之间的边的边特征。接着,将确定出的目标节点对应的节点特征以及边特征输入到决策层中,得到风险预测结果。最后,以最小化风险预测结果与标签之间的偏差为优化目标,对预测模型进行训练。本方法可以在用户执行业务过程中进行有效地业务风控。
-
公开(公告)号:CN115293872A
公开(公告)日:2022-11-04
申请号:CN202210793704.3
申请日:2022-07-07
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06Q40/02 , G06F30/27 , G06K9/62 , G06F119/02
Abstract: 本说明书实施例提供了一种建立风险识别模型的方法及对应装置。其中方法包括:获取利用用户的网络行为数据构建的异构网络图,异构网络图包括节点和边,节点包括行为主体和行为对象,边依据行为主体和行为对象之间的行为关系确定;对异构网络图中的边进行掩膜处理,得到掩膜子图和剩余子图;利用剩余子图和掩膜子图训练图自编码器;其中,图自编码器包括编码网络和第一解码网络;编码网络利用输入的剩余子图得到各节点的表征向量,第一解码网络利用各节点的表征向量预测被掩膜的边,训练目标包括:最小化预测结果与掩膜子图之间的差异;利用训练得到的图自编码器中的编码网络,构建风险识别模型。本申请能够提高风险识别模型的识别效果。
-
公开(公告)号:CN119357252A
公开(公告)日:2025-01-24
申请号:CN202411381094.1
申请日:2024-09-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/2458 , G06F16/23 , G06F16/901 , G06F18/22 , G06F18/214 , G06F18/213 , G06F18/2431 , G06N3/0455 , G06N3/042 , G06N3/049 , G06N3/084 , G06Q10/0635 , G06F123/02
Abstract: 本说明书公开了一种时序图数据风控方法、装置、介质及设备,响应于用户的风控请求,确定当前时刻的时序图数据以及时序图数据中的待风控用户的目标节点,时序图数据的节点是基于用户数据确定的,边是基于用户之间关系确定的,且节点与边携带有数据更新的时间信息。从时序图数据中确定目标节点的子图。将携带时间信息的子图输入训练完成的风控模型,通过风控模型中的时间编码器,得到时间特征,通过风控模型中的图数据编码器,得到图数据特征。将时间特征与图数据特征输入风控模型中的解码器,得到目标节点的风险分类结果,以及目标节点与时序图数据中各节点的连接关系的预测结果。根据风险分类结果以及预测结果,对待风控用户进行风控。
-
公开(公告)号:CN119005331A
公开(公告)日:2024-11-22
申请号:CN202411034282.7
申请日:2024-07-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N5/04 , G06N20/00 , G06F16/332
Abstract: 本说明书公开了一种文本自检模型的微调方法、装置、存储介质、设备,获取原始文本自检模型中指定网络层的初始参数,针对所获取的每个指定网络层,对该指定网络层的初始参数进行降维,根据降维后的各指定网络层与所述原始文本自检模型,得到降维文本自检模型,将样本答复文本输入所述降维文本自检模型,得到所述降维文本自检模型输出的安全性评价,根据所述安全性评价与所述样本答复文本所对应的安全标签的差异,对所述降维文本自检模型进行调整,本方法可以降低文本自检模型微调过程对存储空间的需求,并降低进行微调时计算过程中的模型复杂度。
-
公开(公告)号:CN118708629A
公开(公告)日:2024-09-27
申请号:CN202410711816.9
申请日:2024-06-03
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/2458 , G06F16/906 , G06F16/9535 , G06Q30/0601 , G06Q40/04 , G06F18/25 , G06N3/042 , G06N3/0464 , G06N3/0455 , G06N3/0895
Abstract: 本说明书实施例公开了一种信息提取方法、装置及电子设备。所述信息提取方法包括:获取由节点和边所构成的目标异质图;将所述目标异质图输入用于提取风险信息的信息提取模型的分解模块,得到包含所述目标异质图的中心节点和目标节点的多个子图,同一所述子图的目标节点的类型相同,所述分解模块用于对输入的异质图进行分解处理;将各个所述子图分别输入所述信息提取模型中与所述子图对应的表征模块,得到各个所述子图的中心节点的属性表征;使用所述信息提取模型的融合模块对各个所述子图的中心节点的属性表征进行融合处理,得到所述目标异质图的中心节点的属性表征,以基于所述目标异质图的中心节点的属性表征执行相应的业务处理。
-
公开(公告)号:CN117933343A
公开(公告)日:2024-04-26
申请号:CN202410077897.1
申请日:2024-01-18
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书提供一种图数据处理以及模型训练的方法及装置,其中,图数据处理方法获取目标图数据;所述目标图数据中包括多个用户节点和各个用户节点各自对应的特征数据;任一用户节点对应的特征数据包括该用户节点表示的用户的用户特征;生成所述目标图数据对应的目标序列;所述目标序列包括目标数目个序列元素,所述序列元素包括所述多个节点的部分特征数据;将所述目标序列输入至目标图神经网络,利用目标脉冲神经网络对所述目标图神经网络输出的结果进行二值化处理,得到目标脉冲数据。
-
公开(公告)号:CN118885934A
公开(公告)日:2024-11-01
申请号:CN202410904433.3
申请日:2024-07-05
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/2433 , G06F18/22 , G06N5/045
Abstract: 本说明书公开了一种识别异常数据的方法、装置、存储介质、设备,随机生成初始图结构,对初始图结构进行优化,得到了用于识别异常用户数据的应用图结构,通过该应用图结构对待检测数据进行识别提高了识别异常数据的识别效果,且由于该获取应用图结构的过程未使用机器学习模型,所得到的应用图结构对于现实的用户行为模式具有一定的可解释性。
-
公开(公告)号:CN118708630A
公开(公告)日:2024-09-27
申请号:CN202410714249.2
申请日:2024-06-03
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/2458 , G06F16/35 , G06F16/36 , G06F40/284 , G06F40/30 , G06N5/025 , G06N3/042 , G06N3/045 , G06N3/0895 , G06F18/2433 , G06F18/26 , G06Q20/40 , G06Q50/00
Abstract: 本说明书实施例公开了一种群组的挖掘方法、装置及设备,该方法包括:获取基于预设的社区挖掘算法对预先构建的关联图谱进行挖掘而得到的一个或多个不同的挖掘群组,关联图谱是针对存在预设风险的目标用户构建的图谱,关联图谱中的边由介质的信息和/或交易信息构建;获取每个挖掘群组中的每个节点的属性信息,并基于属性信息,通过属性图模型,确定每个节点对应的节点表征;基于每个节点对应的节点表征和每个挖掘群组中的每个节点的属性信息,确定每个挖掘群组中的离群节点,并基于每个挖掘群组中的离群节点对相应的挖掘群组进行提纯处理,得到提纯后的群组;基于提纯后的群组的属性信息,从提纯后的群组中获取存在预设风险的目标群组。
-
-
-
-
-
-
-
-
-