-
公开(公告)号:CN112905591B
公开(公告)日:2022-08-26
申请号:CN202110152193.2
申请日:2021-02-04
Applicant: 成都信息工程大学 , 成都探码科技有限公司 , 四川省金科成地理信息技术有限公司
Inventor: 乔少杰 , 韩楠 , 宋学江 , 高瑞玮 , 肖月强 , 张小辉 , 赵兰 , 李鑫钰 , 冉先进 , 甘戈 , 孙科 , 范勇强 , 黄萍 , 魏军林 , 温敏 , 程维杰 , 叶青 , 余华 , 向导 , 彭京 , 周凯 , 元昌安 , 黄发良 , 覃晓 , 李斌勇 , 张永清
IPC: G06F16/22 , G06F16/242 , G06N3/08
Abstract: 本发明公开了一种基于机器学习的数据表连接顺序选择方法,包括以下步骤:S1、对SQL语句进行编码,分别生成列、数据表和连接关系的特征向量;S2、根据列和数据表的特征向量,设计向量树AT来生成连接树的特征向量;S3、根据列、数据表、连接关系和连接树的特征向量,设计部分连接计划模型SP来生成部分连接计划的特征向量,进而生成下一时刻连接状态的特征向量;S4、根据下一时刻连接状态的特征向量,构建深度强化学习模型J,并结合部分连接计划模型SP与向量树AT,生成数据表的最优连接顺序。本发明解决了现有查询优化器生成数据表的次优连接顺序导致查询效率较低的问题。
-
公开(公告)号:CN113094368B
公开(公告)日:2022-08-05
申请号:CN202110392024.6
申请日:2021-04-13
Applicant: 成都信息工程大学 , 汉网云联成都科技有限公司
Inventor: 乔少杰 , 杨国平 , 宋海权 , 韩楠 , 李勇 , 闵圣捷 , 王伟业 , 孙科 , 袁犁 , 张浩东 , 范勇强 , 甘戈 , 冉先进 , 魏军林 , 余华 , 元昌安 , 黄发良 , 覃晓 , 郑皎凌 , 张永清
IPC: G06F16/22 , G06F16/2455 , G06F16/2457 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种提升缓存访问命中率的系统及方法,通过设置DDQN模型,提升了缓存区的访问命中率,能够更好地利用缓存区,提高了查询效率。本发明提供的DDQN模型能够学习经验,可以将若干个查询放入查询集合存储表并调度,且从历史执行的查询中获得更多的经验,改进调度策略。本发明能够有效地捕捉缓存区状态以及数据访问模式,更好地利用了缓存区并改进其查询的决策安排;DDQN模型能够适应从未执行过的查询,查询调度策略能够快速适应新的查询模板,从而产生显著的效果以及提升资源共享效率。
-
公开(公告)号:CN114841219A
公开(公告)日:2022-08-02
申请号:CN202210628059.X
申请日:2022-06-06
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于半监督学习的单通道脑电睡眠分期方法,包括以下步骤:S1、建立睡眠混合神经网络模型;S2、将训练集数据TrainSet分为标签数据集LabeledDataSet和无标签数据集NolabeledDataSet;S3、利用LabeledDataSet对睡眠混合神经网络模型进行预训练,得到预模型PreModel;S4、使用PreModel对NolabeledDataSet进行预测,打上伪标签;然后使用标签数据和伪标签数据对预训练模型进行再次训练,得到伪标签模型PseudoLabelModel;S5、利用PseudoLabelModel对脑电数据进行预测,得到分期结果。本发明采用伪标签训练方法对SHNN模型进行训练,在不改变模型结构的情况下,增强了模型的睡眠分期性能。
-
公开(公告)号:CN111797674B
公开(公告)日:2022-05-10
申请号:CN202010278235.2
申请日:2020-04-10
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于特征融合和粒子群优化算法的MI脑电信号识别方法,包括以下步骤:S1、采集MI脑电信号,并对采集到的MI脑电信号进行带通滤波,随后通过小波软阈值法进行去噪操作,并提取脑电特征信号;S2、采用PSO‑RF对脑电特征信号进行特征筛选。本发明结合了带通滤波、小波去噪、通道筛选、特征提取、特征融合、特征选择以及模式分类,对这七部分进行了有效的整合,最终得到的集成分类器能够达到98.34%的平均正确率,且AUC值和F‑score也都表现优异,因此能够达到精确运动想象分类的目的。
-
公开(公告)号:CN111429000B
公开(公告)日:2021-05-28
申请号:CN202010208141.8
申请日:2020-03-23
Applicant: 成都信息工程大学 , 成都申达森科技有限公司
Abstract: 本发明公开了一种基于站点聚类的共享单车取还站点推荐方法及系统,该方法包括构建单车转移网络并计算站点活跃度,对共享单车系统内站点进行二级聚类,利用多特征LSTM网络对单车需求量进行预测,向用户推荐共享单车取还站点。本发明根据历史行程记录和站点分布数据,构建出单车转移网络,得到每个站点的活跃度,综合考虑站点位置和单车使用模式,对站点进行二级聚类,并分析天气和时间因素对聚簇内单车需求量的影响,选取关键特征构建三维向量,使用多特征LSTM网络预测不同时间段聚簇内单车需求,能够显著提高单车需求量预测准确性,实现向用户合理推荐共享单车取还站点,进而提高用户的出行效率。
-
公开(公告)号:CN111861924A
公开(公告)日:2020-10-30
申请号:CN202010715325.3
申请日:2020-07-23
Applicant: 成都信息工程大学
IPC: G06T5/00
Abstract: 本发明涉及一种基于进化GAN的心脏磁共振图像数据增强方法,该方法在训练生成器时,对生成器进行突变生成多个子代生成器,通过适应性分数函数来评判多个生成器的适应性分数,根据分数来选择最优的子代生成器作为下一个迭代的父代生成器,同时在判别器训练阶段,结合特征向量的线性插值合成新的训练样本并生成相关的线性插值标签,不仅拓展了整个训练集的分布,也对离散样本空间进行连续化并且提高了领域间的平滑性,从而使得模型能够更好地得到训练。本发明的方法图像增强方法,能够生成高质量且多样的样本对训练集进行扩充,最终提高了分类结果的各项指标。
-
公开(公告)号:CN111859338A
公开(公告)日:2020-10-30
申请号:CN202010650672.2
申请日:2020-07-08
Applicant: 成都信息工程大学
IPC: G06F21/32 , A61B5/0476 , A61B5/00
Abstract: 本发明属于信息识别技术领域,公开了一种身份识别方法、系统、存储介质、计算机程序、终端,获得电极帽采集到的脑电信号,输入至身份识别系统;对输入的脑电信号进行噪声去除使用ICA算法和滤波使用带通滤波器进行预处理,滤波操作过后获得有效频段的脑电;将预处理之后的脑电信号使用AR和SWT算法提取脑电信号特征;最后使用图卷积网络算法计算,输出用户ID,对脑电信号进行身份识别。本发明能够根据人体在不同状态下产生的EEG信号,自动的识别用户的身份,降低了对人状态的限制,解决了将人体限制于某一种状态下的EEG信号对人身份的识别;提供了高级的安全的防伪技术,使得黑客和用户都无法获取身份识别口令。
-
公开(公告)号:CN111797674A
公开(公告)日:2020-10-20
申请号:CN202010278235.2
申请日:2020-04-10
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于特征融合和粒子群优化算法的MI脑电信号识别方法,包括以下步骤:S1、采集MI脑电信号,并对采集到的MI脑电信号进行带通滤波,随后通过小波软阈值法进行去噪操作,并提取脑电特征信号;S2、采用PSO-RF对脑电特征信号进行特征筛选。本发明结合了带通滤波、小波去噪、通道筛选、特征提取、特征融合、特征选择以及模式分类,对这七部分进行了有效的整合,最终得到的集成分类器能够达到98.34%的平均正确率,且AUC值和F-score也都表现优异,因此能够达到精确运动想象分类的目的。
-
公开(公告)号:CN107424154A
公开(公告)日:2017-12-01
申请号:CN201710267501.X
申请日:2017-04-21
Applicant: 成都信息工程大学
Abstract: 本发明涉及一种基于动态分配的分水岭图像分割并行方法,将图像平均分成k个基础子图,并将基础子图动态分配给k个线程同时处理,并让先处理完基础子图的线程分担任务较重的线程的任务;然后对基础子图进行分水岭分割,通过排序和浸没对像素点进行处理;再通过改进灰度准则对过分割的基础子图进行后处理;最后采用层叠拼接的方法对基础子图进行并行拼接。本发明的方法通过将基础子图动态分配给多个线程同时进行处理,提高了算法的效率,采用改进灰度准则,具有一定的噪声抑制作用,增强了算法的鲁棒性,最后采用层叠拼接基础子图,进一步的提高了算法效率。
-
公开(公告)号:CN119889442A
公开(公告)日:2025-04-25
申请号:CN202411645264.2
申请日:2024-11-18
IPC: G16B30/00 , G16B25/00 , G16B40/00 , G06F18/2431 , G06F18/21 , G06N3/0895 , G06N3/096 , G06N3/048
Abstract: 本发明公开了一种基于自监督蒸馏学习的细胞类型注释方法,属于细胞类型注释的技术领域,包括根据细胞之间的余弦相似度,构建细胞特异性高相关网络;将单细胞转录组数据张量和细胞特异性高相关网络中各节点拼接张量进行拼接处理,得到拼接数据;将拼接数据送入全局学习层进行自监督蒸馏学习,提取scRNA‑seq数据的特征信息;基于特征信息,采用KAN模型对scRNA‑seq数据进行细胞类型注释。本发明使用scTCHCN作为scRNA‑seq数据深层次特征提取的下游任务模型,可以提高模型的通用性,克服批次效应带来的噪声影响,提供在细胞类型注释方面高度可扩展的稳健且准确的能力。
-
-
-
-
-
-
-
-
-