一种单细胞分化轨迹推断方法

    公开(公告)号:CN118824350B

    公开(公告)日:2024-11-26

    申请号:CN202411296576.7

    申请日:2024-09-18

    Abstract: 本发明公开了一种单细胞分化轨迹推断方法,涉及细胞分化轨迹分析技术领域,本方法基于DNA序列和RNA序列进行建模,同时预测染色质可及性和基因表达状态,并整合成对的单细胞多组学数据,将分类器的权重作为两种组学的细胞低维特征,利用对比学习学习其中的细胞异质性,提高单细胞的聚类准确率,进而构建准确的单细胞的分化轨迹。本方法采用轻量级深度学习模型,避免了当前众多基于编码解码器结构的单细胞数据融合模型训练困难的尴尬处境,还可以提高数据处理效率。本方法考虑到细胞异质性对于单细胞多组学数据融合的影响,利用对比学习,能够更精准地刻画多组学数据中的单细胞特征,为准确聚类打下基础。

    一种单细胞分化轨迹推断方法

    公开(公告)号:CN118824350A

    公开(公告)日:2024-10-22

    申请号:CN202411296576.7

    申请日:2024-09-18

    Abstract: 本发明公开了一种单细胞分化轨迹推断方法,涉及细胞分化轨迹分析技术领域,本方法基于DNA序列和RNA序列进行建模,同时预测染色质可及性和基因表达状态,并整合成对的单细胞多组学数据,将分类器的权重作为两种组学的细胞低维特征,利用对比学习学习其中的细胞异质性,提高单细胞的聚类准确率,进而构建准确的单细胞的分化轨迹。本方法采用轻量级深度学习模型,避免了当前众多基于编码解码器结构的单细胞数据融合模型训练困难的尴尬处境,还可以提高数据处理效率。本方法考虑到细胞异质性对于单细胞多组学数据融合的影响,利用对比学习,能够更精准地刻画多组学数据中的单细胞特征,为准确聚类打下基础。

Patent Agency Ranking