-
公开(公告)号:CN113871489A
公开(公告)日:2021-12-31
申请号:CN202111458096.2
申请日:2021-12-02
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/861 , H01L29/06 , H01L21/329
Abstract: 本发明公开了一种全环绕多通道漂移区横向功率器件及其制造方法,包括从下至上依次叠设的半导体衬底、埋层和有源区;有源区包括半导体漂移区、P型半导体区和N型半导体区;半导体漂移区包括介质层和内置在介质层中的若干个半导体通道。本发明通过在半导体通道四周填充高介电常数介质材料,形成全环绕多通道漂移区结构。全环绕介质从四个方向对漂移区中的半导体通道进行调制,使漂移区电势分布更加均匀、有效提升漂移区横向电场、器件纵向电场和器件击穿电压;多通道结构进一步增加高介电常数介质的调制面积,同时高介电常数介质有助于提高漂移区掺杂浓度,降低导通电阻;本发明不仅适用于硅基功率器件,也适用于宽禁带半导体功率器件。
-
公开(公告)号:CN110415751B
公开(公告)日:2021-05-25
申请号:CN201910720675.6
申请日:2019-08-06
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 一种可参数化配置的存储器内建自测试电路,该电路包括信号生成模块101、数据选择模块102、JTAG模块103及主控制器104。所述信号生成模块101、数据选择模块102与主控制器104相连,所述数据选择模块102、JTAG模块103与信号生成模块101相连,所述JTAG模块103与外部TAP控制器105相连,所述数据选择模块102与外部待测存储器106相连。其中,每片待测存储器对应一个信号生成模块与一个数据选择模块。本发明提出了一种可综合、可编程、可配置的存储器测试电路,易于集成、使用灵活。
-
公开(公告)号:CN112768530A
公开(公告)日:2021-05-07
申请号:CN202110147386.9
申请日:2021-02-03
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/78 , H01L29/423
Abstract: 本发明公开了一种高K围栅场介质纵向双扩散功率器件,包括半导体漂移区、设置在半导体漂移区上方的半导体阱区、以及设置在半导体漂移区下方的半导体漏区;还包括高K围场介质,将高K围场介质上部刻蚀形成高K围栅介质;所述半导体阱区上方设置有半导体体接触区和半导体源区。本发明在开态时,高K围栅介质降低了器件的阈值电压、沟道电阻以及栅极泄漏电流,增加了器件的跨导和输出电流;栅端金属电极、高K围栅场介质和半导体漂移区构成了MIS电容,在开态时,在漂移区与高K围栅场介质界面处产生电子积累层,降低器件的比导通电阻;在关态时,高K围栅场介质对漂移区有辅助耗尽作用,能够使漂移区具有更高的掺杂浓度,降低器件的比导通电阻。
-
公开(公告)号:CN110426974A
公开(公告)日:2019-11-08
申请号:CN201910729459.8
申请日:2019-08-08
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: G05B19/042
Abstract: 一种基于正交相位选通的等效采样控制电路,其中,触发信号产生电路采用VCO产生5GHz精准频率信号,依次经过2分频、4分频、8分频电路,形成基于5GHz的相分8分频625MHz信号,由FPGA控制电路控制时钟选通电路对8路分频时钟信号进行选通控制,按照同一周期内的相序逐次驱动ADC采样时钟,从而实现对反射脉冲的8个周期不同相位的信号幅值进行采样,高速ADC电路预先设置接收信号频率为6.25MHz,则每路触发信号经过100个周期可以完成一个周期的采样,然后离散波形重构电路对这些样本值按照采样时间和触发相位顺序组合形成完整的回波信号。本发明具有数字集成度高,探测速度快,分辨率高等特点。实现了对回波信号的良好接收,采样效率提高80%。
-
公开(公告)号:CN110415751A
公开(公告)日:2019-11-05
申请号:CN201910720675.6
申请日:2019-08-06
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 一种可参数化配置的存储器内建自测试电路,该电路包括信号生成模块101、数据选择模块102、JTAG模块103及主控制器104。所述信号生成模块101、数据选择模块102与主控制器104相连,所述数据选择模块102、JTAG模块103与信号生成模块101相连,所述JTAG模块103与外部TAP控制器105相连,所述数据选择模块102与外部待测存储器106相连。其中,每片待测存储器对应一个信号生成模块与一个数据选择模块。本发明提出了一种可综合、可编程、可配置的存储器测试电路,易于集成、使用灵活。
-
公开(公告)号:CN108549301A
公开(公告)日:2018-09-18
申请号:CN201810592473.3
申请日:2018-06-11
Applicant: 南京邮电大学南通研究院有限公司
IPC: G05B19/042 , G01S19/14 , H04L7/00
Abstract: 本发明公开了一种超宽带探地雷达控制系统,包括同步时钟生成电路;GPS定位模块;测量轮编码器模块;用于等效采样的数控延时电路、ADC模数转换电路;以及主控制器。所述同步时钟生成电路,GPS定位模块,测量轮编码器模块,数控延时电路,模数转换电路均与主控制器相连接。所述的同步时钟生成电路还与外部超宽带雷达发射机相连。所述数控延时电路还与外部等效采样取样脉冲发生电路相连。所述ADC模数转换电路还与外部等效采样取样门相连。所述主控制器还通过以太网与外部服务器相连。本发明缩小了超宽带探地雷达控制系统的体积,简化了系统的连接线缆,提高了超宽带雷达系统可靠性。
-
公开(公告)号:CN119230612A
公开(公告)日:2024-12-31
申请号:CN202411733732.1
申请日:2024-11-29
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/78 , H01L29/06 , H01L29/08 , H01L29/423 , H01L27/07 , H01L29/872 , H01L29/417
Abstract: 本发明公开了一种提升耐短路能力的内嵌SBD的SiC功率器件,包括金属漏极、N型掺杂半导体衬底、N型掺杂半导体外延层、N型掺杂半导体JFET区、栅极深沟槽、金属栅极、源极浅沟槽、SBD金属、P型掺杂半导体屏蔽层和金属源极。金属栅极嵌设在栅极深沟槽顶部。本发明中的SBD金属、源极浅沟槽和P型掺杂半导体屏蔽层,能减少器件短路时的电流密度,降低器件在短路时的温度,避免器件发生热击穿、以提高器件的耐短路能力。另外,本发明中填充有高K电介质的栅极深沟槽,能调制漂移区的电势分布,以保证低导通电阻和高反向击穿电压,从而兼顾器件的导通电阻和耐短路能力的改善,有效调和二者的矛盾关系。
-
公开(公告)号:CN119126909A
公开(公告)日:2024-12-13
申请号:CN202411623866.8
申请日:2024-11-14
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: G05F1/567
Abstract: 本发明提供了一种宽输入范围的预稳压电路,带载能力强,随温度变化小,输出电压好调。在能隙基准1.2V电压的基础上,利用三极管和电容的温度系数相反的特性,产生一个随温度变化小的电源电压,在‑50°‑125°温度范围内,电源压降在200mV下,电压大小可按要求调节。以5V电源电压为例,本发明在5.7V‑60V的输入电压范围内可以产生稳定的5V电压,在5.7V以下电压会随输入电压降低。本发明考虑到基准模块等轻载低压模块需要更为稳定的电源电压,设计了两级输出结构,第一级供轻载模块使用,第二级供重载模块使用。本发明带载能力强,经过仿真发现可以带载20mA。在电流负载突变时输出电压也可极快稳定。
-
公开(公告)号:CN118943199A
公开(公告)日:2024-11-12
申请号:CN202411433922.1
申请日:2024-10-15
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: H01L29/78 , H01L29/423 , H01L21/336 , H01L21/28
Abstract: 本发明公开了分裂高K金属栅超结碳化硅沟槽MOSFET及制备方法,包括半导体漏区、半导体N型漂移区、半导体P型漂移区、P型阱区、半导体N型源区、半导体P型源区和分裂高K金属栅结构;分裂高K金属栅结构包括深槽高K介质区、分裂栅金属和栅极金属;分裂栅金属和栅极金属位于深槽高K介质内部;与分裂高K金属栅结构相接触的半导体N型漂移区界面上,从上至下依次布设有半导体源区、P型阱区和半导体漂移区。本发明在动态时,分裂高K金属栅结构能减小漏栅电容,改善器件的动态性能;深槽高K介质区调制漂移区电场提高击穿电压,提高漂移区浓度降低比导通电阻;深槽高K介质区内部的峰值电场得到降低,提高栅介质稳定性。
-
公开(公告)号:CN118839646A
公开(公告)日:2024-10-25
申请号:CN202410869328.0
申请日:2024-07-01
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
IPC: G06F30/337
Abstract: 本发明公开了一种基于物理约束的半导体器件工艺结构参数自动改进方法,包括S1:设定预期器件电学性能参数;S2:规划工艺结构参数范围;S3:选择器件电学性能表征方法;S4:定义物理约束条件;S5:设计基于物理知识的目标函数;S6:根据自动设计流程编写程序脚本并运行;S7:获取设计结束后的满足物理约束且改进设计指标的工艺结构参数。本发明基于物理约束,对半导体器件的工艺结构参数进行自动改进,可在数分钟至数小时内给出满足物理约束且改进电学性能的半导体器件工艺结构参数。
-
-
-
-
-
-
-
-
-