-
公开(公告)号:CN108920773B
公开(公告)日:2020-06-02
申请号:CN201810588028.X
申请日:2018-06-08
Applicant: 华中科技大学
IPC: G06F30/20
Abstract: 本发明公开了一种动力学驱动的超精密运动系统详细方案设计方法与系统。本发明的方法提出在任何具体设计阶段,从系统全局出发,针对系统方案和/或关键组件的设计与修改,对系统方案进行动力学建模、仿真与分析,以分析结果为依据,驱动设计进程;关键组件、子系统和/或系统方案的建模、仿真与分析操作,由对应的流程控制、引导,可获得设计资料和工具的支持;利用模型模板,完成关键组件和/或子系统的动态特性分析和等效建模。本发明的系统为上述方法提供工具支持,包括:流程控制与数据管理器、系统模型组装平台、系统模型仿真器、后处理分析工具集、实例数据管理中心、模板管理中心、模板创成器、模型生成器、仿真试验管理中心、求解器。
-
公开(公告)号:CN109459627B
公开(公告)日:2020-01-21
申请号:CN201811084840.5
申请日:2018-09-18
Applicant: 华中科技大学
Abstract: 本发明属于触控笔测试领域,并具体公开了一种机器人化触控笔测试装置及方法,包括工作台单元、设置在工作台单元上的操作臂及与操作臂相连的夹持测试单元,夹持测试单元包括压力测试机构及连接于压力测试机构的功能键按压机构,压力测试机构包括安装法兰、外套筒、内套筒、弹簧、压力传感器和三爪卡盘组件,外套筒套装在安装法兰和内套筒外部,弹簧和压力传感器设于外套筒内部,并位于安装法兰和内套筒之间,弹簧设于安装法兰底部,并与压力传感器的上端相连,压力传感器下端与内套筒相连,三爪卡盘组件安装在内套筒下端。所述方法采用上述装置进行触控笔的测试。本发明可实现触控笔的多姿态触控测试,具有自动化程度高、测试效率高等优点。
-
公开(公告)号:CN106778541B
公开(公告)日:2019-08-13
申请号:CN201611070757.3
申请日:2016-11-28
Applicant: 华中科技大学
Abstract: 本发明属于机器视觉和检测领域,并公开了一种基于视觉的多层梁中外梁孔的识别与定位方法。该方法包括:(a)计算实际尺寸向像素尺寸转换的转换系数;(b)从待识别多层梁外梁孔中选择生成模板,对待识别图像进行模板匹配,得到孔的尺寸类型,以最佳匹配点为中心截取新的局部图像,对新图像进行亚像素精度级的边缘检测;(c)使用边缘点数据拟合孔中心坐标,乘上转换系数得到待识别多层梁外梁孔的中心坐标,从而实现孔的识别与定位。通过本发明,实现了多层梁中外梁孔盲孔的自动识别和定位,减轻了工人的劳动强度,提高了外梁孔加工精度和多层梁的铆接质量,并数倍提升生产效率。
-
公开(公告)号:CN108155773B
公开(公告)日:2019-06-28
申请号:CN201711407007.5
申请日:2017-12-22
Applicant: 华中科技大学
IPC: H02K35/02
Abstract: 本发明属于超精密减振领域,并具体公开了一种自调谐两自由度电磁吸振器,包括壳体、共振装置、固有频率调节装置和耗能装置,共振装置包括永磁体和磁铁,永磁体通过柔性连接件设于壳体内部,柔性连接件一端与壳体左侧相连,另一端穿过壳体右侧与张紧装置相连,磁铁设置有两块,两块磁铁分设于永磁体左右两侧,并安装在壳体内部的左右表面上,左侧磁铁的磁极与永磁体左侧磁极相同,右侧磁铁的磁极与永磁体右侧磁极相同;固有频率调节装置用于夹持柔性连接件并调节柔性连接件参与振动的长度,壳体的内表面布置有两端与耗能装置相连的导电线圈。本发明可同时吸收两个自由度方向的振动,具有对微小振动响应快、吸振效率高和固有频率可实时调节的优点。
-
公开(公告)号:CN106364580A
公开(公告)日:2017-02-01
申请号:CN201610817111.0
申请日:2016-09-12
Applicant: 华中科技大学
IPC: B62D57/02
CPC classification number: B62D57/02
Abstract: 本发明公开了一种行星轮式越障机器人爬楼梯控制方法,包括如下步骤:1)保持越障机器人匀速直线前进,测量其同一驱动组中两行星轮组与前方台阶的距离及行星轮组的转速,并计算偏转角;2)计算各行星轮组的理论转速,并使行星轮组以计算得出的转速进行运动;3)检测当前的L1和L2,并计算当前的偏转角θ;4)判断当前偏转角θ是否超过预设值:若是,则转入步骤2),若否,则控制机器人继续等速直线前进;5)判断两行星轮组是否到达阶梯:若否,则继续等速直线前进,若是,则两行星轮组一起翻转,翻越台阶;6)判断两行星轮组是否到达目的地:若否,则重复步骤1)~5),若是,则结束运动。本发明具有控制操作简单,转向精度高等优点。
-
公开(公告)号:CN102902857B
公开(公告)日:2015-06-03
申请号:CN201210378060.8
申请日:2012-10-08
Applicant: 华中科技大学
IPC: G06F17/50
Abstract: 本发明公开了一种光学元件支撑参数的确定方法,该方法具体为:确定保证面形精度的最少支撑点数为最优支撑点数,并计算支撑点的理想支撑力;依据理想支撑力定义多个不同支撑力波动水平,计算不同支撑力水平下随机支撑力引起的镜片面形变化;统计并检验镜片面形畸变的随机分布规律,建立不同支撑力水平与光学元件成像质量的映射关系;根据质量控制标准,确定支撑力的波动范围。本发明基于蒙特卡洛方法,解析不均匀支撑力作用下镜片面形畸变的随机分布规律,分析不同随机支撑力水平对光学元件成像质量的影响,从而确定合理的支撑力波动范围,为光学元件支撑系统的设计和装调提供了有效的参考数据。
-
公开(公告)号:CN103836070A
公开(公告)日:2014-06-04
申请号:CN201410100961.X
申请日:2014-03-18
Applicant: 华中科技大学
IPC: F16C32/06
CPC classification number: F16C32/0607 , F16C29/00 , F16C29/025 , F16C32/0614 , F16C32/067 , F16C2233/00 , F16C2322/39
Abstract: 本发明公开了一种主动式气浮支承装置,包括气浮支承本体、气膜主动调节单元、支承本体检测单元和驱动控制单元,其中支承本体检测装置测量气浮支承的状态,驱动控制系统根据检测信号生成控制信号,驱动控制气膜主动调节装置产生主动作用,动态调节气浮支承表面的气膜形态,由此动态调整气浮支承装置的气膜间隙压强分布,从而提高气浮支承的动刚度特性。通过本发明,能够显著提高气浮支承的动刚度特性,并达到稳定气浮支承的目的;此外,按照本发明的主动式气浮支承装置还具备结构紧凑、便于操控和高精度的特点,因而尤其适用于对支承动刚度要求高的超精密加工或高速主轴等场合。
-
公开(公告)号:CN102736628B
公开(公告)日:2014-05-07
申请号:CN201210192833.3
申请日:2012-06-12
Applicant: 华中科技大学
IPC: G05D1/02
Abstract: 一种具有环境适应性的足式机器人稳定性控制方法及系统,该控制方法通过利用上一触地过程相关参数信息与期望达到的控制目标进行比较,对飞行相水平运动速度和系统总能量实行反馈控制,预测控制触地角度并进行系统能量补偿控制,最终实现足式机器人SLIP等效模型在不同地面环境下的期望稳定周期运动。系统包括系统状态检测模块和稳定控制模块。本发明不需要建立具体的机器人动力学模型,不需要计算精确的不动点触地角度,通过反馈控制实现控制收敛,控制方法简单,计算迅速,很好的解决了现有方法控制实时性不足、适应性不够等问题。且具有较好的未知环境适应性,为足式机器人稳定性控制提供了一种较好的解决方案。
-
公开(公告)号:CN101825142B
公开(公告)日:2012-01-25
申请号:CN201010188385.0
申请日:2010-06-01
Applicant: 华中科技大学
IPC: F16C32/06
Abstract: 本发明公开了一种单腔多孔式节流结构的气体轴承,其特征在于:在气体轴承上开有中心孔,该中心孔内镶嵌有圆柱体,该圆柱体的直径为5~10mm,长度为0.1~2mm,该圆柱体上开有微型孔阵列,微型孔的孔径为1~100μm,微型孔阵列构成节流器,中心孔的上端开有一个圆柱体腔作为进气腔,中心孔的下端开有一个圆柱体腔作为压力腔,压力腔与进气腔的直径具有相同量级,为1~10mm,压力腔的深度为0.01~0.5mm。这种单腔多孔式节流结构的气体轴承具有良好的稳定性和力学性能,能应用于各种超精密运动平台中,实现平台纳米甚至亚纳米精度的运动。
-
公开(公告)号:CN102230509A
公开(公告)日:2011-11-02
申请号:CN201110083202.3
申请日:2011-04-02
Applicant: 华中科技大学
IPC: F16F15/03
Abstract: 本发明公开了一种非接触式主动阻尼装置,包括阻尼器和驱动器两部分,阻尼器和驱动器电气连接,阻尼器包括固定不动的定子和与定子相分离的阻尼发生器,阻尼发生器相对于定子能够在一个方向上运动。阻尼装置由分离式动子和定子组成,通过主动控制方式调节驱动电路的驱动电流,从而实现阻尼力的主动控制。该阻尼装置能够实现对超精密减振器提供自适应变阻尼控制,有效地衰减减振台的高频振动。本发明可以为光刻机及其他的精密设备提供超静的环境。本发明提供的阻尼装置可用作小型超精密设备、精密仪器的基础支撑。将本发明提供的阻尼装置与空气弹簧、液压隔振器等被动阻尼装置串联使用,亦可对大型设备、大型仪器实现精密减振。
-
-
-
-
-
-
-
-
-