-
公开(公告)号:CN107123845A
公开(公告)日:2017-09-01
申请号:CN201710285611.9
申请日:2017-04-27
Applicant: 北京大学
Abstract: 本发明公开了一种金属共面波导特征阻抗值的增加方法。该方法通过在金属共面波导的信号线上覆盖二维材料,来实现对金属共面波导特征阻抗的增加。本发明在实现特征阻抗值增加的同时,不会增加导体的导体损耗。不同于一般通过调整结构参数来增加金属共面波导的特征阻抗值,本发明对金属共面波导的特征阻抗值增加的方法较为直观简单,避免了耗费大量的调整时间。另外,本发明不影响原金属共面波导制备过程中的任何加工过程,能够很好地与其制备工艺兼容。
-
公开(公告)号:CN106768513A
公开(公告)日:2017-05-31
申请号:CN201611079246.8
申请日:2016-11-30
Applicant: 北京大学
IPC: G01L1/18
Abstract: 本发明公开了一种结构简单的大量程和高精度的压力传感器及其制备方法。该方法利用表面存在大量褶皱的纳米厚度石墨材料,基于褶皱在垂直于表面的方向上的导电性会随着褶皱上承受的压力的增大而明显增大这一现象,设计了一个结构简单、易于实现的压力传感器结构。由于石墨材料表面的褶皱无处不在、密度较大,且高度各异,所以该压力传感器不仅可以在较大的量程范围内实现对压力的测量,而且对压力测量的精度也非常高,可以实现对微力的测量。另外,由于石墨材料为纳米厚度片状结构,该压力传感器还具有体积小的优势。
-
公开(公告)号:CN103943925B
公开(公告)日:2016-10-05
申请号:CN201410116434.8
申请日:2014-03-26
Applicant: 北京大学
Abstract: 本发明公开了一种全碳同轴线及其制备方法,属于集成电路技术领域。本发明利用石墨烯为单原子层厚,将石墨烯卷作圆柱体,构成半径很小(可以小到nm级别)的同轴线的内导体,同轴线内导体传导电流,同时,用单层或多层石墨烯来做同轴线的外导体构成电磁波在空间中的边界,利用氧化石墨来做内导体和外导体之间的介质材料,约束、引导电磁波能量的定向传输。本发明制得的同轴线的尺寸非常小,可以适用于射频、微波集成电路。
-
公开(公告)号:CN105698953A
公开(公告)日:2016-06-22
申请号:CN201410709659.4
申请日:2014-11-27
Applicant: 北京大学
IPC: G01K7/04
Abstract: 本发明公开了一种基于石墨烯无源热电偶的微纳尺度温度探测方法,该测试方法基于石墨烯的赛贝克系数可以调节,用石墨烯一种材料,制备传统上需要两种材料才可以制备的热电偶器件,实现温度探测。本发明同时避免传统的利用外加电压调制石墨烯赛贝克系数的方式,直接通过不同功函数的金属接触,使得不同区域的石墨烯赛贝克系数不同。本发明既可以直接集成在芯片上原位测量,也可以集成在探针头上,用于扫描不同样品的温度梯度。
-
公开(公告)号:CN103224232B
公开(公告)日:2015-02-11
申请号:CN201310143368.9
申请日:2013-04-23
Applicant: 北京大学
IPC: C01B31/04
Abstract: 本发明公开了一种石墨烯纳米孔洞的制备方法,属于薄膜材料微纳加工领域领域。该方法采用化学气象沉积法(CVD)在金属铜薄膜上制备石墨烯,利用石墨烯表面本征的缺陷结构制备石墨烯纳米孔洞,其孔径大小可为几纳米至数百纳米。该石墨烯纳米孔洞具有精度高、孔洞深度在单原子水平、便于化学修饰、可导电、使用寿命长、成本低廉等诸多优点。本发明将在单分子检测、电化学操控、生物识别等领域具有较大应用。
-
公开(公告)号:CN103943925A
公开(公告)日:2014-07-23
申请号:CN201410116434.8
申请日:2014-03-26
Applicant: 北京大学
Abstract: 本发明公开了一种全碳同轴线及其制备方法,属于集成电路技术领域。本发明利用石墨烯为单原子层厚,将石墨烯卷作圆柱体,构成半径很小(可以小到nm级别)的同轴线的内导体,同轴线内导体传导电流,同时,用单层或多层石墨烯来做同轴线的外导体构成电磁波在空间中的边界,利用氧化石墨来做内导体和外导体之间的介质材料,约束、引导电磁波能量的定向传输。本发明制得的同轴线的尺寸非常小,可以适用于射频、微波集成电路。
-
公开(公告)号:CN103193216A
公开(公告)日:2013-07-10
申请号:CN201310126385.1
申请日:2013-04-12
Applicant: 北京大学
Abstract: 本发明公开了一种碳纳米复合材料的制备方法,属于纳米材料的研制领域。该方法利用CVD方法制备单层或多层石墨烯;然后将石墨烯转移到目标衬底上;在石墨烯与目标衬底的结构上面涂覆光刻胶,用电感耦合等离子体方法轰击,使光刻胶变性,然后泡掉残余的光刻胶;将经过轰击的光刻胶、石墨烯和目标衬底一并进行高温处理,使光刻胶碳化,形成碳纳米复合材料。本发明所得到的密集分布的有较高的导电性能的大比面积的碳纳米材料的厚度大概为50~200nm,各个碳纳米线条的直径大概为十几纳米,长度为数十纳米。
-
-
-
-
-
-