-
公开(公告)号:CN101298386B
公开(公告)日:2011-09-07
申请号:CN200810064612.1
申请日:2008-05-28
Applicant: 哈尔滨工业大学
Abstract: 一种氧化锆多孔陶瓷的制备方法,它涉及一种多孔陶瓷的制备方法。它解决了现有氧化锆多孔陶瓷的制备工艺难以控制、所得材料孔的分布不规则、均匀性较差的问题。方法:一、将ZrO2、C10H16和聚苯乙烯湿混,得浆料;二、浆料进行预冷,然后冷冻;三、冷冻后的浆料脱模后干燥,然后进行保温烧结,再冷却到室温,即得氧化锆多孔陶瓷。本发明制备工艺易于控制,且所得材料孔的分布规则、均匀性较好。
-
公开(公告)号:CN101391895B
公开(公告)日:2011-07-27
申请号:CN200810064759.0
申请日:2008-06-18
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/48 , C04B35/622
Abstract: 梯度防/隔热陶瓷基复合材料及其制备方法,它涉及一种陶瓷基复合材料及其制备方法。本发明解决了现有硼化物陶瓷基均质复合材料热导率单一的问题,提供了一种梯度防/隔热陶瓷基复合材料及其制备方法。本发明材料由防热层、第一中间过渡层、第二中间过渡层、第三中间过渡层和隔热层组成。本发明材料的制备方法如下:将经过超声清洗、球磨、烘干的用于制备各层的原材料粉体按顺序平铺在石墨模具中,然后在惰性气氛的条件下,将混合物升温后保温5min即得。本发明制备工艺简单、成本低,本发明防热端的室温热导率为89.77W/m·℃;1800℃时的热导率为61.86W/m·℃;而隔热端的室温热导率最低能达到8.58W/m·℃;1800℃时的热导率最低能达到18.27W/m·℃。
-
公开(公告)号:CN101602597A
公开(公告)日:2009-12-16
申请号:CN200910072132.4
申请日:2009-05-26
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/622
Abstract: 硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料及其制备方法,它涉及陶瓷基复合材料及其制备方法。它解决了现有ZrB2超高温陶瓷基复合材料的抗热冲击性能差、临界温差低、强度高、断裂韧性低和临界裂纹尺寸低的问题。硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料由硼化锆粉末、碳化硅粉末和碳黑粉末制成。方法:一、称取原料湿混后得浆料;二、浆料烘干后研磨得混合粉料;三、混合粉料烧结后冷却取出即得。本发明中材料的抗热冲击性能好,其临界温差为470~1000℃,强度为132.03~695.54MPa,断裂韧性为2.01~6.57MPa·m1/2,临界裂纹尺寸为65.9~249.9μm。
-
公开(公告)号:CN101391895A
公开(公告)日:2009-03-25
申请号:CN200810064759.0
申请日:2008-06-18
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/48 , C04B35/622
Abstract: 梯度防/隔热陶瓷基复合材料及其制备方法,它涉及一种陶瓷基复合材料及其制备方法。本发明解决了现有硼化物陶瓷基均质复合材料热导率单一的问题,提供了一种梯度防/隔热陶瓷基复合材料及其制备方法。本发明材料由防热层、第一中间过渡层、第二中间过渡层、第三中间过渡层和隔热层组成。本发明材料的制备方法如下:将经过超声清洗、球磨、烘干的用于制备各层的原材料粉体按顺序平铺在石墨模具中,然后在惰性气氛的条件下,将混合物升温后保温5min即得。本发明制备工艺简单、成本低,本发明防热端的室温热导率为89.77W/m·℃;1800℃时的热导率为61.86W/m·℃;而隔热端的室温热导率最低能达到8.58W/m·℃;1800℃时的热导率最低能达到18.27W/m·℃。
-
公开(公告)号:CN101298386A
公开(公告)日:2008-11-05
申请号:CN200810064612.1
申请日:2008-05-28
Applicant: 哈尔滨工业大学
Abstract: 一种氧化锆多孔陶瓷的制备方法,它涉及一种多孔陶瓷的制备方法。它解决了现有氧化锆多孔陶瓷的制备工艺难以控制、所得材料孔的分布不规则、均匀性较差的问题。方法:一、将ZrO2、C10H16和聚苯乙烯湿混,得浆料;二、浆料进行预冷,然后冷冻;三、冷冻后的浆料脱模后干燥,然后进行保温烧结,再冷却到室温,即得氧化锆多孔陶瓷。本发明制备工艺易于控制,且所得材料孔的分布规则、均匀性较好。
-
公开(公告)号:CN120004643A
公开(公告)日:2025-05-16
申请号:CN202510227354.8
申请日:2025-02-27
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/10 , C04B35/622 , C04B35/634 , C04B35/636 , C04B35/63
Abstract: 本发明涉及一种抗氧化耐烧蚀短切氧化物纤维预制体及其成型制备方法,属于防隔热材料技术领域,该抗氧化耐烧蚀短切氧化物纤维预制体的成型制备方法包括:将短切氧化物纤维、多元陶瓷组分、粘结剂、吸附剂、水溶性粘度调节剂和水混合,经加热搅拌,得到浆料;将所述浆料进行醇洗、压滤,得到湿坯;将所述湿坯进行干燥、固化、炭化,得到抗氧化耐烧蚀短切氧化物纤维预制体。本发明提供的抗氧化耐烧蚀短切氧化物纤维预制体的成型制备方法可以克服原料密度差异,实现将中密度陶瓷颗粒、低密度空心陶瓷微球均匀地引入高密度短切氧化物纤维预制体内部,得到具有优异性能的轻质抗氧化耐烧蚀短切氧化物纤维预制体。
-
公开(公告)号:CN118978379B
公开(公告)日:2025-03-28
申请号:CN202411183596.3
申请日:2024-08-27
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种耐高温抗热震非晶氧化物气凝胶及其制备方法与应用,属于功能材料技术领域。为解决现有氧化物气凝胶无法在高温环境中重复稳定服役的问题,本发明提供了一种耐高温抗热震非晶氧化物气凝胶,所述气凝胶为多组元气凝胶,其中组元氧化铪的摩尔百分含量为50mol%。本发明采用高热稳定性和高相变温度的氧化铪作为气凝胶的主要组元,通过异质元素的加入延后了氧化铪的晶化温度,使气凝胶在高温下保持非晶态,避免晶化与相变带来的体积变化对气凝胶微纳结构影响,使其在1050℃~室温15个30min的热震循环后仍能保持100m2/g以上的比表面积,实现长时服役不失效,在可重复飞行器中有较好的应用前景。
-
公开(公告)号:CN118771849B
公开(公告)日:2025-02-25
申请号:CN202410812386.X
申请日:2024-06-21
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种氧化锆气凝胶改性的轻质防隔热纤维预制体及其制备方法,属于防隔热复合材料领域,该氧化锆气凝胶改性的轻质防隔热纤维预制体的制备方法包括如下步骤:将锆的化合物、溶剂、pH调节剂、交联剂、孔结构控制剂和干燥控制剂混合,得到二氧化锆气凝胶前驱液;将纤维预制体浸渍于二氧化锆气凝胶前驱液中并加入凝胶促进剂,经凝胶反应、溶剂置换、干燥、热处理,得到氧化锆气凝胶改性的轻质防隔热纤维预制体。本发明提供的氧化锆气凝胶改性的纤维预制体的制备方法解决了传统ZrO2气凝胶制备中收缩率大、稳定性差、成型难度高和成本高的问题,适合大批量生产。
-
公开(公告)号:CN118652518B
公开(公告)日:2024-12-13
申请号:CN202410794423.9
申请日:2024-06-19
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种各向异性酚醛气凝胶复合材料及其制备方法,属于复合材料领域,所述各向异性酚醛气凝胶复合材料包括酚醛气凝胶基体和纤维增强体;所述酚醛气凝胶基体为具有各向异性纳米孔结构的酚醛气凝胶。本发明提供的酚醛气凝胶复合材料中的醛树脂气凝胶基体为具有各向异性纳米孔结构的酚醛气凝胶,具有更好的取向结构和各向异性,可实现热量的定向传导,克服了由内部无序纳米颗粒堆积而成的各向同性传统酚醛气凝胶无法实现定向的传质、传热等功能的问题,突破了其无法在定向传质和传输领域应用与发展的局限,大大拓展了酚醛气凝胶的应用范围,在离子导体、环境净化、过滤及能源催化领域具有广泛的应用前景。
-
公开(公告)号:CN118852717A
公开(公告)日:2024-10-29
申请号:CN202410850229.8
申请日:2024-06-28
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种表层密度可控的防隔热梯度化复合材料及其制备方法。所述方法:将热熔型酚醛树脂、陶瓷化填料和溶剂在40~90℃下混匀,将得到的预混物用涂布机涂覆在离型纸上,得到混合膜;将混合膜铺覆在纤维预制体的一面并利用真空袋压工艺使混合膜浸渍入纤维预制体内;重复该步骤,直至纤维预制体内浸渍的预混物达到预设的浸渍厚度;将完成浸渍后的纤维预制体在100~200℃下固化处理,得到表层密度可控的纤维预制体;用酚醛树脂溶液浸渍表层密度可控的纤维预制体,再依次经溶胶‑凝胶、溶剂置换和常压干燥,制得表层密度可控的防隔热梯度化复合材料。本发明制备的材料兼具优异的隔热性能和抗烧蚀性能,在热防护领域有很大应用前景。
-
-
-
-
-
-
-
-
-