一种提高ZrB2-SiC超高温陶瓷材料抗热冲击和强度的方法

    公开(公告)号:CN101747047A

    公开(公告)日:2010-06-23

    申请号:CN200910073080.2

    申请日:2009-10-21

    Abstract: 一种提高ZrB2-SiC超高温陶瓷材料抗热冲击和强度的方法,它涉及一种提高陶瓷材料抗热冲击和强度的方法。本发明解决了现有二硼化锆基超高温陶瓷材料抗热冲击性能差、强度差的问题。本发明方法:一、称取原料;二、球磨分散;三、烘干;四、烧结;五、氧化;六、加热保温,即提高了ZrB2-SiC超高温陶瓷材料抗热冲击和强度。本发明方法有效的提高了ZrB2-SiC超高温陶瓷材料抗热冲击性和强度,与现有的二硼化锆基超高温陶瓷材料相比较,抗热冲击性能提高50%左右,力学性能提高30%左右。

    一种石墨-碳化锆抗氧化烧蚀型材料及其制备方法

    公开(公告)号:CN101550004A

    公开(公告)日:2009-10-07

    申请号:CN200910071943.2

    申请日:2009-05-04

    Abstract: 一种石墨-碳化锆抗氧化烧蚀型材料及其制备方法,它涉及一种石墨材料及其制备方法。它解决了现有石墨材料高温下易氧化以及经过浸渍和喷涂处理后的石墨材料致密低的问题。石墨-碳化锆抗氧化烧蚀型材料由氧化锆粉末和石墨粉末制成。方法:一、称取原料,球磨湿混后得浆料;二、浆料烘干后研磨,得混合粉料;三、混合粉料在真空条件下热压烧结,随炉冷却后取出,即得石墨-碳化锆抗氧化烧蚀型材料。本发明中石墨-碳化锆抗氧化烧蚀型材料的质量损失率小于现有石墨材料,耐高温性能好,高温下不易氧化,突破了现有石墨材料在450℃以下使用的温度限制,其使用温度显著地提高到了1200~2200℃,致密度大于90%,且力学性能也提高了。

    快速加热硼化锆-碳化硅-石墨陶瓷基复合材料的装置

    公开(公告)号:CN101614633A

    公开(公告)日:2009-12-30

    申请号:CN200910072536.3

    申请日:2009-07-17

    Abstract: 快速加热硼化锆-碳化硅-石墨陶瓷基复合材料的装置,涉及一种快速加热硼化锆-碳化硅-石墨陶瓷基复合材料的装置。本发明的目的是为了解决目前硼化锆-碳化硅-石墨陶瓷基复合材料在1800℃以上的高温氧化中采用的实验装置升温速度慢、成本高的问题。本发明包括可控硅调压变压器、微处理器、电压传感器和两个铜电极,可控硅调压变压器的正、负极电压输出端分别连接一个铜电极的一端,可控硅调压变压器的正、负极电压输出端之间连接电压传感器,电压传感器的采样信号输出端连接微处理器的电压信号输入端;微处理器的控制信号输出端连接可控硅调压变压器的调压控制信号输入端。本发明作为快速加热硼化锆-碳化硅-石墨陶瓷基复合材料的装置。

    硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料及其制备方法

    公开(公告)号:CN101602597A

    公开(公告)日:2009-12-16

    申请号:CN200910072132.4

    申请日:2009-05-26

    Abstract: 硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料及其制备方法,它涉及陶瓷基复合材料及其制备方法。它解决了现有ZrB2超高温陶瓷基复合材料的抗热冲击性能差、临界温差低、强度高、断裂韧性低和临界裂纹尺寸低的问题。硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料由硼化锆粉末、碳化硅粉末和碳黑粉末制成。方法:一、称取原料湿混后得浆料;二、浆料烘干后研磨得混合粉料;三、混合粉料烧结后冷却取出即得。本发明中材料的抗热冲击性能好,其临界温差为470~1000℃,强度为132.03~695.54MPa,断裂韧性为2.01~6.57MPa·m1/2,临界裂纹尺寸为65.9~249.9μm。

    一种石墨-碳化锆抗氧化烧蚀型材料及其制备方法

    公开(公告)号:CN101550004B

    公开(公告)日:2012-07-18

    申请号:CN200910071943.2

    申请日:2009-05-04

    Abstract: 一种石墨-碳化锆抗氧化烧蚀型材料及其制备方法,它涉及一种石墨材料及其制备方法。它解决了现有石墨材料高温下易氧化以及经过浸渍和喷涂处理后的石墨材料致密低的问题。石墨-碳化锆抗氧化烧蚀型材料由氧化锆粉末和石墨粉末制成。方法:一、称取原料,球磨湿混后得浆料;二、浆料烘干后研磨,得混合粉料;三、混合粉料在真空条件下热压烧结,随炉冷却后取出,即得石墨-碳化锆抗氧化烧蚀型材料。本发明中石墨-碳化锆抗氧化烧蚀型材料的质量损失率小于现有石墨材料,耐高温性能好,高温下不易氧化,突破了现有石墨材料在450℃以下使用的温度限制,其使用温度显著地提高到了1200~2200℃,致密度大于90%,且力学性能也提高了。

    一种在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法

    公开(公告)号:CN101560103B

    公开(公告)日:2012-01-25

    申请号:CN200910072136.2

    申请日:2009-05-27

    Abstract: 一种在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法,它涉及了一种在陶瓷复合材料表面原位生成的高抗氧化性能膜的方法。本发明解决了现有硼化锆-碳化硅陶瓷复合材料的抗氧化性能差、使用过程中质量损失大,无法将微弧氧化法应用到陶瓷表面的处理上。本发明在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法按如下步骤进行:一、混合,研磨;二、烧结;三、微弧氧化反应;即在硼化锆-碳化硅陶瓷复合材料表面原位生成了高抗氧化性能膜。本发明成功应用微弧氧化法在陶瓷材料表面制备了高抗氧化涂层,制备出涂层大大提高了硼化锆-碳化硅陶瓷复合材料的抗氧化性能,降低了材料使用过程中的质量损失。

    一种在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法

    公开(公告)号:CN101560103A

    公开(公告)日:2009-10-21

    申请号:CN200910072136.2

    申请日:2009-05-27

    Abstract: 一种在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法,它涉及了一种在陶瓷复合材料表面原位生成的高抗氧化性能膜的方法。本发明解决了现有硼化锆-碳化硅陶瓷复合材料的抗氧化性能差、使用过程中质量损失大,无法将微弧氧化法应用到陶瓷表面的处理上。本发明在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法按如下步骤进行:一、混合,研磨;二、烧结;三、微弧氧化反应;即在硼化锆-碳化硅陶瓷复合材料表面原位生成了高抗氧化性能膜。本发明成功应用微弧氧化法在陶瓷材料表面制备了高抗氧化涂层,制备出涂层大大提高了硼化锆-碳化硅陶瓷复合材料的抗氧化性能,降低了材料使用过程中的质量损失。

    一种提高ZrB2-SiC超高温陶瓷材料抗热冲击和强度的方法

    公开(公告)号:CN101747047B

    公开(公告)日:2012-07-18

    申请号:CN200910073080.2

    申请日:2009-10-21

    Abstract: 一种提高ZrB2-SiC超高温陶瓷材料抗热冲击和强度的方法,它涉及一种提高陶瓷材料抗热冲击和强度的方法。本发明解决了现有二硼化锆基超高温陶瓷材料抗热冲击性能差、强度差的问题。本发明方法:一、称取原料;二、球磨分散;三、烘干;四、烧结;五、氧化;六、加热保温,即提高了ZrB2-SiC超高温陶瓷材料抗热冲击和强度。本发明方法有效的提高了ZrB2-SiC超高温陶瓷材料抗热冲击性和强度,与现有的二硼化锆基超高温陶瓷材料相比较,抗热冲击性能提高50%左右,力学性能提高30%左右。

    硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料及其制备方法

    公开(公告)号:CN101602597B

    公开(公告)日:2012-05-23

    申请号:CN200910072132.4

    申请日:2009-05-26

    Abstract: 硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料及其制备方法,它涉及陶瓷基复合材料及其制备方法。它解决了现有ZrB2超高温陶瓷基复合材料的抗热冲击性能差、临界温差低、强度高、断裂韧性低和临界裂纹尺寸低的问题。硼化锆-碳化硅-碳黑三元高韧化超高温陶瓷基复合材料由硼化锆粉末、碳化硅粉末和碳黑粉末制成。方法:一、称取原料湿混后得浆料;二、浆料烘干后研磨得混合粉料;三、混合粉料烧结后冷却取出即得。本发明中材料的抗热冲击性能好,其临界温差为470~1000℃,强度为132.03~695.54MPa,断裂韧性为2.01~6.57MPa·m1/2,临界裂纹尺寸为65.9~249.9μm。

Patent Agency Ranking