-
公开(公告)号:CN114644341A
公开(公告)日:2022-06-21
申请号:CN202210276433.4
申请日:2022-03-21
Applicant: 哈尔滨工业大学
Abstract: 一种SiO2@C纳米复合粉体的制备方法,本发明涉及碳包覆纳米材料合成技术领域,具体涉及一种SiO2@C纳米复合粉体的制备方法。本发明要解决现有制备SiO2@C纳米复合粉体时制备工艺复杂、成本高、污染环境、产物分散性差、碳壳层厚度难以调控的问题。制备步骤:一、配制反应溶液;二、制备SiO2@糖碳壳层纳米复合粉体;三、制备SiO2@C纳米复合粉体。本发明具有制备工艺简单、成本低、绿色环保、产物分散性好等优点,并且纳米复合粉体表面碳壳层的厚度可以根据使用需求进行调控。本发明可用于大规模生产SiO2@C纳米复合粉体。
-
公开(公告)号:CN114632434A
公开(公告)日:2022-06-17
申请号:CN202210277617.2
申请日:2022-03-21
Applicant: 哈尔滨工业大学
Abstract: 一种纳米SiO2粉体‑糖溶液的制备方法,本发明涉及纳米材料领域,具体涉及一种纳米SiO2粉体‑糖溶液的制备方法。本发明要解决目前较难或无法制备出具有高固相含量、良好分散性和稳定性的纳米SiO2粉体‑糖溶液且制备工艺繁杂的问题。本发明的制备步骤:一、配制糖混合溶液;二、调控溶液的pH值;三、配制纳米SiO2粉体‑糖溶液。本发明可制备出具有高固相含量、良好分散性和稳定性的纳米SiO2粉体‑糖溶液并且具有制备工艺简单的优点。本发明用于制备纳米SiO2粉体‑糖溶液。
-
公开(公告)号:CN108532293B
公开(公告)日:2021-05-07
申请号:CN201810244821.8
申请日:2018-03-23
Applicant: 哈尔滨工业大学
IPC: D06M11/74 , D06M11/64 , D06M101/40
Abstract: 一种调节糖溶液pH制备碳纤维表面碳涂层的方法,本发明涉及碳纤维改性领域。本发明要解决现有方法制备碳纤维表面涂层成本高与厚度难以调控的问题。方法:一、碳纤维脱胶;二、碳纤维表面酸化处理;三、浸渍溶液的配制;四、碳纤维浸渍糖溶液;五、水热反应制备碳纤维表面碳涂层。本发明采用成本低廉的糖作为碳源制备碳纤维表面碳涂层,该碳涂层具有厚度可控、均匀致密的特点,能够应用于陶瓷复合材料制备、碳碳复合材料及碳纤维增强树脂基复合材料制备等领域。本发明用于制备碳纤维表面碳涂层。
-
公开(公告)号:CN106565236B
公开(公告)日:2019-04-05
申请号:CN201610933747.1
申请日:2016-10-25
Applicant: 哈尔滨工业大学
IPC: C04B35/48 , C04B35/495 , C04B35/626 , C04B35/634 , C04B35/638 , B28B3/00 , B28B11/24 , B28B17/02
Abstract: 一种制备近零膨胀ZrO2/ZrW2O8复合材料的方法,步骤如下:一、将氧化锆粉体和钨酸锆粉体或氧化锆粉体和氧化钨粉体混合;二、将混合粉体与研磨介质和研磨溶剂加入球磨罐中,球磨至混合浆料的平均粒径D50≤0.9μm,加入聚乙烯醇粘合剂后再球磨5min,混合均匀;三、将混合粉体手工造粒后,陈腐;四、干压成型;五、等静压成型;六、低温排胶;七、将试样置于密闭坩埚中并用氧化钨粉体包埋;八、烧结并淬冷;九、烘干试样,即得到近零膨胀ZrO2/ZrW2O8复合材料。本发明操作简便,受外界因素影响小,大大降低ZrW2O8的分解率,提高试样的致密度和力学性能,并缩短试样的制备周期,节约能耗和成本。
-
公开(公告)号:CN104034601A
公开(公告)日:2014-09-10
申请号:CN201410314141.0
申请日:2014-07-03
Applicant: 哈尔滨工业大学
Abstract: 一种使用数字图像相关技术精确确定防热材料高温力学性能参数的方法,属于试验测定材料参数技术领域。本发明基于数字图像相关技术获得材料在试验过程中的变形情况,结合高温力学试验机提供的载荷、温度数据,确定材料在真空(充气)、某特定温度下的力学性能参数。本发明采用蓝光进行补光,在DIC光学测量镜头前加蓝光滤光片,并采用对喷溅到试样上的散斑进行烘烤,来满足高温下DIC的正确使用。本发明操作简单,可重复性强,不仅能够模拟材料的热冲击,还能更精确地、全面地反映防热材料在高温条件下的力学响应,能够直观反映在试验中以往不能观察和测量到的材料整体变形情况和横向变形系数,能够使材料性能参数的表征变得更加真实、有效。
-
公开(公告)号:CN101332510A
公开(公告)日:2008-12-31
申请号:CN200710072421.5
申请日:2007-06-29
Applicant: 哈尔滨工业大学
Abstract: 采用叠层法制备功能梯度材料的方法,分层实体造型是一种快速成型制造技术。在快速成型制造过程中,传统的材料余量的去除被一种通过逐渐增加材料而成型的方法所替代。快速成型制造方法能够与CAD,激光,光化学以及聚合物技术相结合实现一体化制造过程。分层实体造型制造过程是从传统的3维CAD文档开始,该文档被转化成制造用的标准格式(*.STL文件),然后再通过分离程序将材料模型片解成很多非常薄的断面。根据这些断面的轮廓设计的扫描路径控制成形台和激光扫描仪的移动。本发明组成包括:坯体的设计、素坯的制备、坯体的分层、片层的制备、坯体的制备、坯体自蔓延燃烧合成。本发明涉及功能梯度材料制备领域。
-
公开(公告)号:CN101323984A
公开(公告)日:2008-12-17
申请号:CN200810064984.4
申请日:2008-07-23
Applicant: 哈尔滨工业大学
Abstract: 本发明是一种大尺寸高熔点晶体生长的加热装置及其制作方法。它是钨制密集排布圆筐鸟笼式加热结构,包括若干组弯曲小钨棒,通过长钨带将所有小钨棒相互连接在一起形成一串联电路,同一组间由若干根钨棒等间距排列组成,并且相同组会对称性分布在围成的圆筐上,不同组间钨棒设置有高低层次,异面相互交错分布。为克服现有技术中温度场不均匀,加热效率低,不宜控制加热速度和温度场精度,难以满足大尺寸晶体生长系统要求等相关问题,本发明设计了一种独特的钨制密集排布圆筐鸟笼式加热结构,电流在不同区域通过不同长度的电阻丝,有利于获得上低下高、中央低两侧高型的温场分布,并且能够很好保证生长过程中的小温度梯度要求。
-
公开(公告)号:CN101315436A
公开(公告)日:2008-12-03
申请号:CN200710072300.0
申请日:2007-06-01
Applicant: 哈尔滨工业大学
Abstract: 超大尺寸碳化硅空间反射镜坯体的制造方法及应用,现有的技术中为了获得足够的比刚度,传统光学材料如光学玻璃等在制造大尺寸光学元件时会导致重量的急剧增加,并且成像质量急剧下降,以光学玻璃等为代表的传统光学材料已经不适用于空间光学发展的要求,因此需要产品替代传统光学材料。该方法组成包括:优化设计反射镜的外形及尺寸,将超大尺寸的反射镜分割为小尺寸的毛坯图,通过计算机和数控加工设备制造模具、制备浆料,浇注,并用反应烧结法制造毛坯、对毛坯加工并采用钎焊的方法将各个毛坯连接一起、修整。本发明用于制作超大尺寸的碳化硅空间反射镜坯体。
-
公开(公告)号:CN101315434A
公开(公告)日:2008-12-03
申请号:CN200710072297.2
申请日:2007-06-01
Applicant: 哈尔滨工业大学
IPC: G02B5/08 , C04B35/565 , C04B35/65 , C04B41/80
Abstract: 随动系统轻质反射镜部件的制造方法,传统的光学玻璃反射镜具有很低的热膨胀系数,适于在温度变化较大的环境下工作,但是其比刚度小,不能制成轻质结构,因此光学玻璃反射镜的质量较大;铍反射镜具有很好的机械和物理性能,是较为理想的光学反射镜,但是铍材料具有毒性,使得其制备和加工成本大幅度增加。随动系统轻质反射镜部件的制造方法,其组成包括:碳化硅反射镜(1)、铝合金支架(2),所述的铝合金支架与反射镜由环氧树脂粘合在一起。本发明应用于光学领域。
-
公开(公告)号:CN101314824A
公开(公告)日:2008-12-03
申请号:CN200710072303.4
申请日:2007-06-01
Applicant: 哈尔滨工业大学
Abstract: 金属基复合材料的制备方法,美国已经把复合材料作为国防部的关键技术核心来实施,投入了大量的资金、人力和物力,处于工业领先地位。本发明的方法包括:混料、模具制备、成型,烧结与后处理,所述的将制备好的坯体放置到石墨平板上,在坯体上堆积金属粉末,金属粉末是Cu粉、Al粉、Si粉或者Ni粉,然后全部放入真空烧结炉中,烧结温度在熔渗材料熔点以上100~200℃之间,使金属熔化渗入多孔坯体中,将多孔坯体内部孔隙充满,冷却保温,随炉冷却,冷却时间3~5天,获得完全致密的金属基复合材料。本方法得到的新产品用于航空航天、军事工业以及汽车工业、大规模集成电路板等民用场合。
-
-
-
-
-
-
-
-
-