基于相似变换模型的栅格数据坐标转换并行方法

    公开(公告)号:CN102591622A

    公开(公告)日:2012-07-18

    申请号:CN201110441700.0

    申请日:2011-12-27

    Applicant: 南京大学

    Abstract: 本发明公开了基于相似变换模型的栅格数据坐标转换并行方法,属于高性能地理计算领域。其步骤为:步骤1:并行初始化;步骤2:用户输入参数;步骤3:调用GDAL数据读写数据函数;步骤4:确定坐标转换类型及转换步骤;步骤5:进行源文件边界采样及坐标变换;步骤6:对目标文件平均分块;步骤7:各进程对数据块的边界进行采样及坐标变换;步骤8:读取数据块数据、源文件中与数据块对应范围内的数据,存入数组;步骤9:对数据块中每一像元的坐标进行由目标参考系到源目标参考系的转换;步骤10:计算像元在各波段的值并赋给数组中该像元点相应元素;步骤11:将数据块数组写入目标文件。本发明可有效提高栅格数据坐标转换数据量和效率。

    一种城镇空间三维结构与人口流动的相关性分析方法

    公开(公告)号:CN119443378A

    公开(公告)日:2025-02-14

    申请号:CN202411490496.5

    申请日:2024-10-24

    Applicant: 南京大学

    Abstract: 本发明公开了一种城镇空间三维结构与人口流动的相关性分析方法,涉及城镇空间与人口流动相关性分析领域,该方法包括以下步骤:基于城镇建设数据集构建城镇建设指标体系,通过对城镇建设指标体系进行结构特征分析,得到城镇建设三维空间结构特征;利用基站获取手机信令数据并识别城镇人口的通勤行为,构建城镇人口流动的网络结构特征;利用LightGBM算法构建并训练回归模型,通过SHAP算法对回归模型进行解释性分析。本发明通过对城镇空间特征与人口流动时空相关性分析,探究城镇空间结构的各特征对人口流动重要程度,进而有效地利用人口流动趋势来进行对城市发展规划方向提供有价值的参考。

    一种无线信号绕射损耗预测方法

    公开(公告)号:CN118300720A

    公开(公告)日:2024-07-05

    申请号:CN202410530589.X

    申请日:2024-04-29

    Applicant: 南京大学

    Abstract: 本发明涉及一种无线信号绕射损耗预测方法,包括如下步骤:将待预测区域进行平面栅格化处理得到栅格图,获取待预测收发天线组参数;对于待预测收发天线组,利用地形插值法和主峰迭代法提取其间无线信号传播路径并重塑路径间地形信息,找到收发天线间产生绕射的所有相对峰点,利用单刃绕射损耗计算方法对上述相对峰点所产生的绕射损耗进行计算,求和得到待预测收发天线组间的绕射损耗。本发明适用于所有地形特征的无线信号绕射损耗计算,可以提高无线信号覆盖预测中绕射损耗部分的精确度。

    基于兴趣点Voronoi图的城市街区功能识别方法

    公开(公告)号:CN115100394B

    公开(公告)日:2023-11-03

    申请号:CN202210729862.2

    申请日:2022-06-24

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于兴趣点Voronoi图的城市街区功能识别方法,属于数据处理技术领域。该方法执行如下步骤:对城市街区内部的兴趣点数据按类别进行分类;创建规则格网将城市街区划分为若干格网单元;对每个格网单元内的兴趣点数据进行聚合,得到兴趣点聚合点数据;基于兴趣点聚合点数据创建Voronoi图,得到每个兴趣点聚合点数据对应的Voronoi多边形;计算城市街区内每个Voronoi多边形的面积,将Voronoi多边形的面积与城市街区的面积之比作为对应的兴趣点聚合点数据的权重,从而实现对城市街区的功能识别。本发明能够凸显密度低但能够表征城市街区主导功能的兴趣点数据重要性,从而有助于提高基于兴趣点数据的城市街区功能区识别的准确率。

    基于多源国土资源数据的土地类型分类方法

    公开(公告)号:CN111062446B

    公开(公告)日:2023-05-09

    申请号:CN201911355597.0

    申请日:2019-12-25

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于多源国土资源数据的土地类型分类方法,该方法借助第二次全国土壤普查、土地利用现状调查、地理国情普查、互联网数据等多源数据,融合地貌类型、土壤类型、土地利用类型、土地利用强度等反映土地资源综合特征的属性指标,构建了中尺度土地类型分类系统,并提出了集典型验证与分层验证等于一体的分类结果验证方法体系。本发明旨在提升土地类型研究的效率与实用性,实现土地资源综合信息的精准分类,服务国家国土资源调查、地理国情普查等重大战略应用需求。

    一种集成多源地理大数据的城市活力定量评价方法

    公开(公告)号:CN115146990A

    公开(公告)日:2022-10-04

    申请号:CN202210852776.0

    申请日:2022-07-11

    Applicant: 南京大学

    Abstract: 本发明公开一种集成多源地理大数据的城市活力定量评价方法,本评价方法包括以下步骤:S1、对道路数据进行预处理获取街区数据,S2、将街区范围内获取的城市活力评价数据进行汇总,形成特征,S3、计算Pearson相关系数矩阵,确定特征与城市活力的相关性,同时排除冗余特征,S4、构建综合指标和机器学习模型模拟城市活力,S5、对城市活力模拟结果进行精度评价,分析各特征的贡献。本发明通过集成多源地理大数据,构建综合指标和构建机器学习模型,可以解决现有技术中城市活力评价方法精度不足、数据来源较少的问题,建立衡量各因素对城市活力的贡献的方法,并形成综合城市活力评价体系。

    一种人类活动对植被覆盖变化的定量分析方法

    公开(公告)号:CN114973018A

    公开(公告)日:2022-08-30

    申请号:CN202210671132.1

    申请日:2022-06-15

    Applicant: 南京大学

    Abstract: 本发明公开了一种人类活动对植被覆盖变化的定量分析方法,该方法包括以下步骤:S1、采用MODIS/NDVI遥感数据表征植被覆盖、VIIRS/DNB遥感数据表征人类活动强度,通过时间序列预处理技术分别构建MTS和VTS两个时间序列;S2、构建时间序列分割技术,实现时间序列的迭代分割;S3、构建时间序列合并与特征提取技术,通过排序角度法迭代实现时间序列的合并,并提取时间序列特征;S4、通过分析MTS和VTS的时间序列特征,进行MTS和VTS的计算与空间格局分析,实现MTS和VTS相关性的定量化分析。通过融合时间序列分割、时间序列合并、空间分析与统计等技术,实现人类活动对植被覆盖影响的定量化分析。

    基于多源国土资源数据的土地类型分类方法

    公开(公告)号:CN111062446A

    公开(公告)日:2020-04-24

    申请号:CN201911355597.0

    申请日:2019-12-25

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于多源国土资源数据的土地类型分类方法,该方法借助第二次全国土壤普查、土地利用现状调查、地理国情普查、互联网数据等多源数据,融合地貌类型、土壤类型、土地利用类型、土地利用强度等反映土地资源综合特征的属性指标,构建了中尺度土地类型分类系统,并提出了集典型验证与分层验证等于一体的分类结果验证方法体系。本发明旨在提升土地类型研究的效率与实用性,实现土地资源综合信息的精准分类,服务国家国土资源调查、地理国情普查等重大战略应用需求。

    一种基于三角网的面向对象耕地信息自动提取方法

    公开(公告)号:CN106548141B

    公开(公告)日:2019-07-26

    申请号:CN201610934973.1

    申请日:2016-11-01

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于三角网的面向对象耕地信息自动提取方法,其步骤为:利用多尺度分割法对高空间分辨率影像进行分割;剔除长条状分割对象(道路,沟渠等);提取剩余分割对象的中心点;利用中心点构建三角网;对三角网进行剥皮操作;使用AUTOCLUST聚类算法构建三角网,并聚类;利用V图约束,优化聚类结果,避免过度聚类和欠聚类;利用最大方差约束,剔除剩余的零星林地;得到耕地提取结果并进行精度评估。本发明克服了高空间分辨率遥感影像数据量大,处理难的问题,充分利用分割后的对象提供的语义信息,通过剔除居民地和道路等对耕地信息提取造成干扰的对象,从而高效地进行耕地信息的自动提取,并保证耕地提取的整体性。

    基于CUDA的多边形栅格化GPU并行计算方法

    公开(公告)号:CN109670001A

    公开(公告)日:2019-04-23

    申请号:CN201811350214.6

    申请日:2018-11-14

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于CUDA的多边形栅格化GPU并行计算方法,由CPU和GPU协同并行处理多边形栅格化;其中,CPU的执行过程包括以下步骤:所有多边形根据PNN进行升序排序,形成第一多边形队列;计算第一多边形队列中各多边形的占用内存MU;按照CUDA中grid、block和thread的层次结构进行多边形的划分:读取每一批次多边形数据并传递给GPU处理,并接收GPU的处理结果。GPU的处理过程包括以下步骤:接收CPU传递的多边形数据;将多边形数据分配给各block及thread;各thread分别调用BAF算法执行栅格化计算;将栅格化结果传递回CPU。本发明能有效提高并行效率、保证负载均衡,且适用于海量多边形的栅格化。

Patent Agency Ranking