一种基于三角网的面向对象耕地信息自动提取方法

    公开(公告)号:CN106548141B

    公开(公告)日:2019-07-26

    申请号:CN201610934973.1

    申请日:2016-11-01

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于三角网的面向对象耕地信息自动提取方法,其步骤为:利用多尺度分割法对高空间分辨率影像进行分割;剔除长条状分割对象(道路,沟渠等);提取剩余分割对象的中心点;利用中心点构建三角网;对三角网进行剥皮操作;使用AUTOCLUST聚类算法构建三角网,并聚类;利用V图约束,优化聚类结果,避免过度聚类和欠聚类;利用最大方差约束,剔除剩余的零星林地;得到耕地提取结果并进行精度评估。本发明克服了高空间分辨率遥感影像数据量大,处理难的问题,充分利用分割后的对象提供的语义信息,通过剔除居民地和道路等对耕地信息提取造成干扰的对象,从而高效地进行耕地信息的自动提取,并保证耕地提取的整体性。

    一种基于主动学习的面向对象分类方法

    公开(公告)号:CN111259961A

    公开(公告)日:2020-06-09

    申请号:CN202010050545.9

    申请日:2020-01-17

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于主动学习的面向对象分类方法,所述方法提供了一种评估分割对象混合程度的新指标——明确度,能够将分割对象划分为“明确对象”和“不确定对象”。通过评估不确定对象(混合对象)对分类的影响并结合主动学习技术的优势,确定训练样本中20%的明确对象和80%的不确定对象的分配比例,是最佳比例,继而得到一个高效的主动学习采样策略,最终获得稳定优异的训练样本对象集。本发明克服了由于OBIA分割技术的限制,分割结果出现大量混合对象,而导致的分类表现不佳、不稳定的问题。

Patent Agency Ranking