-
公开(公告)号:CN110598513A
公开(公告)日:2019-12-20
申请号:CN201910437849.8
申请日:2019-05-24
Applicant: 南京大学
Abstract: 本发明涉及一种基于SLEUTH模型的城市开发边界预测方法,包括以下步骤:步骤一、分别获取城市中心城区范围的历史与现状的遥感影像,从每一幅遥感影像中提取IBI指数来构建相应的IBI影像,所述IBI指数由用于反映水体信息的MNDWI指数、用于反映建筑用地信息的NDBI指数以及用于反映植被信息的SAVI或NDVI指数构成;步骤二、采用SLEUTH模型,通过所有的IBI影像进行城市建设用地扩张模拟,在扩张阶段设置预设的严格排除图层作为禁止建设边界。同时,本发明本还通过剔除低承载力区域,并与规划政策以及国土空间管控政策相衔接,对预测的开发边界进行修正。本发明能够科学预测城镇发展极限规模及其扩展方向,并能够衔接相关规划和其他国土控制线。
-
公开(公告)号:CN106548141B
公开(公告)日:2019-07-26
申请号:CN201610934973.1
申请日:2016-11-01
Applicant: 南京大学
Abstract: 本发明涉及一种基于三角网的面向对象耕地信息自动提取方法,其步骤为:利用多尺度分割法对高空间分辨率影像进行分割;剔除长条状分割对象(道路,沟渠等);提取剩余分割对象的中心点;利用中心点构建三角网;对三角网进行剥皮操作;使用AUTOCLUST聚类算法构建三角网,并聚类;利用V图约束,优化聚类结果,避免过度聚类和欠聚类;利用最大方差约束,剔除剩余的零星林地;得到耕地提取结果并进行精度评估。本发明克服了高空间分辨率遥感影像数据量大,处理难的问题,充分利用分割后的对象提供的语义信息,通过剔除居民地和道路等对耕地信息提取造成干扰的对象,从而高效地进行耕地信息的自动提取,并保证耕地提取的整体性。
-
公开(公告)号:CN106548141A
公开(公告)日:2017-03-29
申请号:CN201610934973.1
申请日:2016-11-01
Applicant: 南京大学
CPC classification number: G06K9/0063 , G06K9/342 , G06K9/6218 , G06T2207/10032 , G06T2207/20016 , G06T2207/20021 , G06T2207/30188
Abstract: 本发明涉及一种基于三角网的面向对象耕地信息自动提取方法,其步骤为:利用多尺度分割法对高空间分辨率影像进行分割;剔除长条状分割对象(道路,沟渠等);提取剩余分割对象的中心点;利用中心点构建三角网;对三角网进行剥皮操作;使用AUTOCLUST聚类算法构建三角网,并聚类;利用V图约束,优化聚类结果,避免过度聚类和欠聚类;利用最大方差约束,剔除剩余的零星林地;得到耕地提取结果并进行精度评估。本发明克服了高空间分辨率遥感影像数据量大,处理难的问题,充分利用分割后的对象提供的语义信息,通过剔除居民地和道路等对耕地信息提取造成干扰的对象,从而高效地进行耕地信息的自动提取,并保证耕地提取的整体性。
-
-