-
公开(公告)号:CN111531580A
公开(公告)日:2020-08-14
申请号:CN202010342977.7
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的多工业机器人故障检测方法及系统,其中,一种基于视觉的多工业机器人故障检测方法,包括以下步骤,S1:采集多工业机器人标准作业视频,建立多个单工业机器人标准作业模式视频帧序列A13,执行S2;S2:实时采集多工业机器人作业视频,建立多个单工业机器人实时作业视频帧序列A22,执行S3;S3:将单工业机器人实时动作图像与对应的单工业机器人标准作业模式视频帧序列A13中的图像进行匹配,采用两阶段法检测单工业机器人是否动作异常,若是,执行S4,若否,执行S2;S4:控制该工业机器人急停。本发明具有采用非接触式的方式发现工业机器人本体突发故障,避免在人机协作时发生机器人伤人的安全事故、检测过程简单准确的优点。
-
公开(公告)号:CN110490236A
公开(公告)日:2019-11-22
申请号:CN201910690299.0
申请日:2019-07-29
Applicant: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
Abstract: 本发明涉及一种基于神经网络的自动图像标注方法、系统、装置和介质,利用预先训练好的卷积神经网络模型提取实验数据集的图像特征;根据图像特征,在训练集中计算得到待标注图像的邻域图像集和对应的第一标签域;构建第一标签域与训练集对应的第二标签域之间的标签语义关联模型,根据标签语义关联模型,在第二标签域中计算得到与每个第一标签相关联的第三标签域;计算待标注图像与每个邻域图像之间的相似度,根据所有相似度得到每个第一标签成为目标标签的第一概率,并根据所有第一概率和标签语义关联模型得到每个第三标签成为目标标签的第二概率;根据所有相似度、所有第一概率和所有第二概率,得到目标标签,并根据目标标签完成标注。
-
公开(公告)号:CN109992761A
公开(公告)日:2019-07-09
申请号:CN201910223558.9
申请日:2019-03-22
Applicant: 武汉工程大学 , 上海华川环保科技有限公司
Abstract: 本发明公开了一种基于规则的自适应文本信息提取方法及软件存储器,该方法包括以下步骤:对专业领域的文本对象构建文本信息提取的规则,并将规则总结在模版中。模版规则按树状顺序分级处理,构成文本模版,模板均为四层结构,包括段、行、句、词;对待提取的文本对象进行统计分析,预设具有代表性的关键词,关键词由相关词与无关词构成;使用构建的模版对待提取的文本进行信息提取,按照模版四层结构顺序,通过关键词进行文本匹配;对于模版里的每个层级,当出现多个匹配结果时,用关键词进行过滤,精确定位目标信息;输出包含关键词的文本提取结果。本发明能够自动适应文本内容、结构的变化,高效准确的提取目标文本信息。
-
公开(公告)号:CN111709991B
公开(公告)日:2023-11-07
申请号:CN202010467531.7
申请日:2020-05-28
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06T7/70 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种铁路工机具的检测方法、系统、装置和存储介质,方法包括获取多个工机具图像,根据所有工机具图像制作数据集;构建深度卷积神经网络,利用数据集和深度卷积神经网络构建反射图像提取网络,根据深度卷积神经网络和反射图像提取网络得到特征检测网络,根据深度卷积神经网络、反射图像提取网络和特征检测网络得到初始检测网络模型;利用数据集对初始检测网络模型进行训练,得到目标检测网络模型;根据目标检测网络模型对待检测工机具图像进行检测,得到检测结果。本发明可有效解决背景复杂、光照不均以及目标尺度差异大、形态复杂和存在遮挡等问题,对铁路工机具进行快速而准确地目标检测,实现铁路工机具的自动清点。
-
公开(公告)号:CN110688368B
公开(公告)日:2023-06-20
申请号:CN201910929085.4
申请日:2019-09-28
Applicant: 武汉工程大学
Inventor: 陈灯 , 张哲泓 , 魏巍 , 张彦铎 , 李晓林 , 鞠剑平 , 唐剑影 , 刘玮 , 段功豪 , 卢涛 , 周华兵 , 李迅 , 于宝成 , 徐文霞 , 鲁统伟 , 闵峰 , 朱锐 , 彭丽 , 王逸文
IPC: G06F16/21 , G06F16/2458 , G06F16/28
Abstract: 本发明公开了一种构件行为模型挖掘方法与装置,该方法包括:S1)运行包含构件的软件,动态采集构件的带参行为交互序列,构成序列集合;S2)合并具有不同参数值的相同构件行为交互序列;S3)基于合并后的构件行为交互序列构建一棵树;S4)合并树中的等价节点获得有限状态机R’;S5)根据参数观察值集合归纳参数的不变式作为有限状态机R’中对应边的守护条件;S6)计算有限状态机R’中构件行为满足参数不变式的概率;S7)基于步骤S6)中迁移发生的概率得到最终的带参概率自动机表示的构件行为模型。本发明考虑了构件行为模型中参数‑构件行为之间的依赖关系并采用概率模型对模型挖掘过程中的噪声进行有效处理,可获得更精确的构件行为模型。
-
公开(公告)号:CN111531581B
公开(公告)日:2023-02-03
申请号:CN202010342989.X
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的工业机器人故障动作检测方法及系统,其中,一种基于视觉的工业机器人故障动作检测方法,包括以下步骤,S1:采集工业机器人标准作业视频,建立工业机器人标准作业模式视频帧序列;S2:实时采集工业机器人作业图像,获取工业机器人实时动作图像;S3:将工业机器人实时动作图像与工业机器人标准作业模式视频帧序列进行匹配,判断工业机器人标准作业模式视频帧序列中是否存在与工业机器人实时动作图像近似匹配的图像,若是,执行S2,若否,执行S4;S4:控制工业机器人急停。本发明具有采用非接触式的方式发现工业机器人本体突发故障,避免在人机协作时发生机器人伤人的安全事故、检测过程简单准确的优点。
-
公开(公告)号:CN115270399A
公开(公告)日:2022-11-01
申请号:CN202210705913.8
申请日:2022-06-21
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06F30/20 , G06K9/62 , G06F119/02
Abstract: 本发明提供一种工业机器人姿态识别方法、装置及存储介质,方法为:导入工业机器人视频,从工业机器人视频中提取并调整工业机器人2D图像;基于人体姿态估计模型DensePose构建教师模型,通过调整后的工业机器人2D图像对教师模型进行训练,通过训练后的教师模型输出工业机器人2D姿态信息;基于均方误差函数MSE构建总体FDPD蒸馏损失函数;基于教师模型构建学生模型,通过总体FDPD蒸馏损失函数和工业机器人2D姿态信息训练学生模型,通过训练后的学生模型识别工业机器人2D图像中的工业机器人姿态。本发明实现了精确高效的工业机器人姿态识别,适用于工业机器人的异常检测,无需过大的网络,提高了工业机器人识别姿态的效率。
-
公开(公告)号:CN115205037A
公开(公告)日:2022-10-18
申请号:CN202210630698.X
申请日:2022-06-06
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明涉及股价长期趋势预测方法、装置、电子设备及存储介质,属于深度学习技术领域。本发明利用K线数据获取能够表征股票的走势变化的第一技术指标因子,将K线数据和第一技术指标因子进行结合以更完善地体现股票市场的波动特征,从而提高股价预测的准确性,且利用多个K线数据和多个第一技术指标因子,以合理预测得到多个时间点对应的股票收盘价,使得预测结果能够反映股价的长期趋势,从而提高股价预测结果的实用性。
-
公开(公告)号:CN110705416B
公开(公告)日:2022-03-01
申请号:CN201910905515.9
申请日:2019-09-24
Applicant: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
Inventor: 陈灯 , 魏巍 , 张彦铎 , 吴云韬 , 李晓林 , 刘玮 , 于宝成 , 周华兵 , 段功豪 , 卢涛 , 李迅 , 彭丽 , 徐文霞 , 谢良 , 王世勋 , 王司恺 , 王逸文
IPC: G06V20/59 , G06V10/764 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及汽车安全驾驶预警设备领域,尤其涉及一种基于驾驶员面部图像建模的安全驾驶预警方法及系统,方法包括:获取驾驶员的历史面部图像及与历史面部图像对应的汽车振动传感器的振动样本数据;并按预设规则对历史面部图像添加预警类别标签,获得安全预警面部图像库作为预设卷积神经网络的输入,训练生成安全预警分类模型;将实时面部图像作为训练后的安全预警分类模型的输入,并获得安全预警分类模型输出的待检测驾驶员的实时面部图像对应的预警类别;根据预警类别,对应执行报警任务。本发明提供的技术方案无需人工选定特征,能够避免传统图像处理算法中特征提取不完备性的问题,具有更高的预测精度,减少误报率和漏报率。
-
公开(公告)号:CN113204648A
公开(公告)日:2021-08-03
申请号:CN202110478354.7
申请日:2021-04-30
Applicant: 武汉工程大学
Abstract: 本发明提供了一种基于判决书文本的自动抽取关系的知识图谱补全方法,通过总结已有知识图谱的构建方法设置谓语导向词,抽取特定领域的关系;将新判决书文本中出现的、已有方法无法抽取的关系总结入库,以指导已有知识图谱增加新关系以补全知识图谱;如此循环往复,动态更新,形成一个不断更新壮大的闭环流程,实现了自动地抽取判决书文本中的三元组、动态地完善和丰富知识图谱的内容的功能。本发明用于补全的关系抽取方法是建立在知识图谱之上的,分类更精确,覆盖范围更全面。本发明根据不同案件的判决书文本补全不同的知识图谱,针对不同类型的判决书完成特定的补全任务,具有较强的针对性和实用性。
-
-
-
-
-
-
-
-
-