-
公开(公告)号:CN110342916B
公开(公告)日:2021-11-30
申请号:CN201910768743.6
申请日:2019-08-20
Applicant: 北京电子工程总体研究所
IPC: C04B35/14 , C04B35/622 , C04B35/626 , C04B35/66 , C04B41/87
Abstract: 本发明公开了一种耐高温高辐射的粉料,该粉料包括以下质量百分比的原料:SiC5‑30%,MoSi220‑45%,SiO215‑60%,ZrB210‑45%该粉体具有高的耐高温高辐射的特性。本发明还公开了该粉料的制备、包含该粉料涂层浆料、涂层浆料的制备、涂层以及涂层的应用。将该涂层应用于陶瓷基复合材料防护时,涂层与陶瓷基复合材料基体粘结强度高,高温环境辐射系数高,具备良好的防氧化、自愈合能力,对陶瓷基复合材料具有防氧化,降低材料本体温度的功能。
-
公开(公告)号:CN111805938A
公开(公告)日:2020-10-23
申请号:CN202010597069.2
申请日:2020-06-28
Applicant: 北京电子工程总体研究所
Abstract: 本发明实施例公开一种用于飞行器的防热承载一体化结构及其成型方法,所述防热承载一体化结构包括本体部;所述本体部由内至外依次设置有承力层、胶层和防热层,所述承力层、防热层通过胶层相连接;所述本体部包括有轴向对称的第一半体部和第二半体部;所述第一半体部和第二半体部分别包括有若干个以不同斜率的母线形成的回转体段。通过本发明提供的防热承载一体化结构,可进一步提高防热承载一体化结构的轻质化、高刚度性能;同时防热承载一体化结构的成型方法可有效解决防热承载一体化结构的成型精度较低,产品的尺寸稳定性差,界面应力大,产品成型质量低等问题,显著提高防热承载一体化结构的成型精度及成型质量。
-
公开(公告)号:CN110484839B
公开(公告)日:2020-08-25
申请号:CN201910759379.7
申请日:2019-08-16
Applicant: 北京电子工程总体研究所
IPC: C22C47/04 , C22C47/06 , C22C47/10 , C22C47/12 , C22C49/06 , C22C49/14 , C22C101/10 , C22C121/02
Abstract: 本发明公开了一种具有高的层间强度的碳纤维增强铝复合材料的制备方法,包括如下步骤:将纳米Si粉分散于有机溶剂中,配制成纳米Si悬浮液;将所述纳米Si悬浮液涂覆于碳纤维增强体表面,干燥,得纳米Si粉涂覆碳纤维增强体;将所述纳米Si粉涂覆碳纤维增强体固定成板状纤维束,得纤维预制体;将所述纤维预制体于模具中,在保护气体氛围下,预热,加入铝金属的熔炼液,在40‑70MPa压力和750‑1000℃温度的条件下反应,再降温至室温,得具有原位自生SiC晶须的所述具有高的层间强度的碳纤维增强铝复合材料。该方法在形成碳纤维增强铝复合材料的过程中原位自生成SiC晶须,极大的提高了碳纤维增强铝复合材料层间强度。
-
公开(公告)号:CN107562064A
公开(公告)日:2018-01-09
申请号:CN201610512916.4
申请日:2016-06-30
Applicant: 北京电子工程总体研究所
IPC: G05D1/08
Abstract: 本发明公开一种基于多执行机构的飞行器的姿态控制分配方法,包括:S1、建立飞行器的姿态运动学方程;S2、通过姿态转换矩阵确定飞行器的姿态角;S3、建立飞行器的姿态动力学方程;S4、根据控制律计算飞行器的期望控制力矩;S5、利用控制分配算法获得当前时刻飞行器的各执行机构的状态组合。本发明适合飞行器大角度姿态快速机动与高精度稳定的机动任务需求。
-
公开(公告)号:CN104778376A
公开(公告)日:2015-07-15
申请号:CN201510220893.5
申请日:2015-05-04
Applicant: 哈尔滨工业大学
IPC: G06F19/00
Abstract: 一种临近空间高超声速滑翔弹头跳跃弹道预测方法,本发明涉及一种飞行器弹道预测方法。本发明是要解决现有方法对机动目标弹道预测精度低的问题,而提供一种临近空间高超声速滑翔弹头跳跃弹道预测方法。它按下述步骤实现:一、建立高超声速滑翔弹头的弹道方程;二、设计实时跟踪高超声速滑翔弹头运动轨迹的卡尔曼滤波器;三、根据跟踪结束时刻的高超声速滑翔弹头的位置、速度和加速度,结合弹道方程估算高超声速滑翔弹头飞行时的攻角和滚转角,在随后的飞行时间内临近空间高超声速滑翔弹头进行等攻角和等滚转角飞行,应用弹道方程向下一时刻循环递推计算,得到一定时间之后的高超声速滑翔弹头的弹道预测值。属于目标跟踪技术领域。
-
公开(公告)号:CN111239722B
公开(公告)日:2023-05-05
申请号:CN202010089368.5
申请日:2020-02-12
Applicant: 哈尔滨工业大学
IPC: G01S13/72
Abstract: 临近空间高速机动目标机动突变的跟踪算法,属于临近空间高速机动目标跟踪技术领域,本发明为解决现有技术对目标运动的跟踪算法不合理的问题。本发明所述跟踪算法的具体过程为:建立坐标系,并建立坐标转换矩阵;建立临近空间高速机动目标的运动方程;建立临近空间高速机动目标的非线性机动模型;构建IMM跟踪滤波器,实现IMM跟踪滤波器对临近空间高速机动目标的跟踪滤波。本发明用于对目标的运动状态进行估计。
-
公开(公告)号:CN114995140A
公开(公告)日:2022-09-02
申请号:CN202210637964.1
申请日:2022-06-07
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种基于直/气复合的高超声速飞行器时变系统的控制方法,它属于飞行器控制技术领域。本发明解决了现有飞行器控制方案存在着执行效率低,且需要将气动参数视为定值进行分析的问题。本发明方法采取的技术方案为:步骤一:建立纵向通道的状态空间方程;步骤二:设计时变系统气动舵在纵向通道的状态反馈控制律;步骤三:设计纵向通道的带有直接侧向力系统的控制器,再基于带有直接侧向力系统的控制器设计纵向通道的具有边界层的滑模控制器;步骤四:设计偏航通道的状态反馈控制律以及具有边界层的滑模控制器,并设计滚转通道的控制器,以实现对高超声速飞行器时变系统的控制。本发明方法可以应用于飞行器控制技术领域。
-
公开(公告)号:CN111239722A
公开(公告)日:2020-06-05
申请号:CN202010089368.5
申请日:2020-02-12
Applicant: 哈尔滨工业大学
IPC: G01S13/72
Abstract: 临近空间高速机动目标机动突变的跟踪算法,属于临近空间高速机动目标跟踪技术领域,本发明为解决现有技术对目标运动的跟踪算法不合理的问题。本发明所述跟踪算法的具体过程为:建立坐标系,并建立坐标转换矩阵;建立临近空间高速机动目标的运动方程;建立临近空间高速机动目标的非线性机动模型;构建IMM跟踪滤波器,实现IMM跟踪滤波器对临近空间高速机动目标的跟踪滤波。本发明用于对目标的运动状态进行估计。
-
公开(公告)号:CN110065649A
公开(公告)日:2019-07-30
申请号:CN201910389092.X
申请日:2019-05-10
Applicant: 哈尔滨工业大学
IPC: B64F5/00
Abstract: 采用虚拟瞄准点的临近空间高超声速飞行器弹道设计方法,属于弹道设计领域,涉及一种弹道设计方法。本发明为了解决现有比例导引的弹道设计方法存在飞行器难以到达目标点和不能满足落角要求的问题。本发明将飞行器飞行阶段分为巡航段和下压段,在巡航段每间隔K1距离选取一个虚拟的目标点,并选取下压点为xk;然后根据虚拟瞄准点选取的原则进行设计,巡航段要求任意两个相邻虚拟瞄准点之间高度变化不超过5km,设计的弹道在纵向平面内近似为正弦函数的形式;在距最终目标点距离K3的情况下,通过寻优算法确定最后一个虚拟瞄准点坐标。本发明用于临近空间高超声速飞行器弹道设计。
-
公开(公告)号:CN114951664A
公开(公告)日:2022-08-30
申请号:CN202210433965.4
申请日:2022-04-24
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种石墨烯与碳化硅混杂增强铝基复合材料及其制备方法,涉及复合材料制备技术领域,包括如下步骤:步骤S1:在氩气的保护氛围下,将纳米碳化硅颗粒、铝粉和过程控制剂混合并球磨后,再加入石墨烯纳米片,经变速球磨,得到均匀的石墨烯/纳米碳化硅/铝复合粉体;步骤S2:对所述石墨烯/纳米碳化硅/铝复合粉体进行预压后,经真空放电等离子烧结、挤压成型后,得到呈准连通以及层状分布石墨烯与碳化硅混杂增强铝基复合材料。本发明通过采取纳米碳化硅颗粒和铝粉预先同速球磨混合、然后再加入石墨烯纳米片变速球磨的方式,有效防止石墨纳米片结构过度破坏并提高其分散均匀性,通过真空放电等离子烧结减少界面不良反应。
-
-
-
-
-
-
-
-
-