-
公开(公告)号:CN104778376B
公开(公告)日:2018-03-16
申请号:CN201510220893.5
申请日:2015-05-04
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 一种临近空间高超声速滑翔弹头跳跃弹道预测方法,本发明涉及一种飞行器弹道预测方法。本发明是要解决现有方法对机动目标弹道预测精度低的问题,而提供一种临近空间高超声速滑翔弹头跳跃弹道预测方法。它按下述步骤实现:一、建立高超声速滑翔弹头的弹道方程;二、设计实时跟踪高超声速滑翔弹头运动轨迹的卡尔曼滤波器;三、根据跟踪结束时刻的高超声速滑翔弹头的位置、速度和加速度,结合弹道方程估算高超声速滑翔弹头飞行时的攻角和滚转角,在随后的飞行时间内临近空间高超声速滑翔弹头进行等攻角和等滚转角飞行,应用弹道方程向下一时刻循环递推计算,得到一定时间之后的高超声速滑翔弹头的弹道预测值。属于目标跟踪技术领域。
-
公开(公告)号:CN103926274B
公开(公告)日:2017-01-25
申请号:CN201410162717.6
申请日:2014-04-22
Applicant: 哈尔滨工业大学
IPC: G01N25/72
Abstract: 一种CFRP层板缺陷的红外热波雷达成像无损检测方法与系统,所述方法为:调整激光光源扩束整形装置与被测样件的空间位置,使激光均匀照射到试样表面,控制数据采集卡产生线性调频脉冲信号,驱动激光功率驱动器,使光纤激光器的功率按照线性调频脉冲信号规律变化;采集被测CFRP试样表面的热波雷达信号;对采集的表面热波雷达信号进行处理,提取热波雷达信号的时频域特征信息,通对特征信息图像的处理与分析,提取样件内部缺陷的特征参数,实现对样件内部缺陷及损伤的无损检测。所述系统包括光纤激光器、激光功率驱动器、数据采集卡、激光光源扩束整形装置、焦平面红外热像仪及计算机。本发明实现了对CFRP层板缺陷的快速、准确检测。
-
公开(公告)号:CN103929128A
公开(公告)日:2014-07-16
申请号:CN201410161986.0
申请日:2014-04-22
Applicant: 哈尔滨工业大学
IPC: H02S50/10
Abstract: 本发明公开了一种硅片与硅基太阳能电池的少数载流子传输特性检测方法与系统。所述方法由正弦规律调制808nm半导体激光激励、短波红外探测器采集少数载流子辐射复合发光信号及发光信号锁相处理与少数载流子运输参数分析三个步骤组成;所述系统包括激光激励装置、函数发生器、短波红外探测器、锁相放大器及计算机。本发明应用短波红外探测技术与信号采集及锁相处理技术得到调制激光诱发半导体硅片与硅基太阳能电池的载流子辐射复合发光的频域响应特性,利用少数载流子辐射复合发光频响特性分析得到少数载流子传输特性参数,这是一种快速、准确及全面获取少数载流子传输特性参数的无损检测方法。
-
公开(公告)号:CN103926253A
公开(公告)日:2014-07-16
申请号:CN201410162687.9
申请日:2014-04-22
Applicant: 哈尔滨工业大学
Abstract: 一种线性调频超声波激励的红外热波无损检测方法与系统,所述方法为:S1、调整超声波激励头与被测样件的空间位置,打开气缸压紧装置的开关,使超声波激励头与被测样件表面紧密接触,由计算机控制信号发生器产生线性调频脉冲信号,驱动超声波发生器功率放大器,使超声波的功率按照线性调频脉冲信号规律变化;S2、打开超声波发生器,采集被测样件表面热波信号;S3、对采集的表面热波信号进行处理,提取表面热波信号的时频域特征信息,通过时频域特征信息集成得到表征材料内部缺陷的特征图像。所述系统包括超声波激励装置、超声波发生器与功率放大器、信号发生器、焦平面红外热像仪及计算机。本发明实现了对材料内部缺陷的快速、准确检测。
-
公开(公告)号:CN104778376A
公开(公告)日:2015-07-15
申请号:CN201510220893.5
申请日:2015-05-04
Applicant: 哈尔滨工业大学
IPC: G06F19/00
Abstract: 一种临近空间高超声速滑翔弹头跳跃弹道预测方法,本发明涉及一种飞行器弹道预测方法。本发明是要解决现有方法对机动目标弹道预测精度低的问题,而提供一种临近空间高超声速滑翔弹头跳跃弹道预测方法。它按下述步骤实现:一、建立高超声速滑翔弹头的弹道方程;二、设计实时跟踪高超声速滑翔弹头运动轨迹的卡尔曼滤波器;三、根据跟踪结束时刻的高超声速滑翔弹头的位置、速度和加速度,结合弹道方程估算高超声速滑翔弹头飞行时的攻角和滚转角,在随后的飞行时间内临近空间高超声速滑翔弹头进行等攻角和等滚转角飞行,应用弹道方程向下一时刻循环递推计算,得到一定时间之后的高超声速滑翔弹头的弹道预测值。属于目标跟踪技术领域。
-
公开(公告)号:CN102248606A
公开(公告)日:2011-11-23
申请号:CN201110167099.0
申请日:2011-06-21
Applicant: 哈尔滨工业大学
IPC: B28D5/00
Abstract: 本发明提供一种利用紫外激光划切蓝宝石晶圆表面的方法,包括以下步骤:将蓝宝石晶圆固定在紫外激光工作台上,将产生外电场的极板置于晶圆之上,并与晶圆保持一定距离;调整工作台,使聚焦镜头与蓝宝石晶圆之间发生相对移动,直至晶圆上表面在显示器上清晰成像;在激光加工开始前,将极板调整为水平,并使激光位于两极板中间;根据紫外激光的参数调整极板间距与电源电压;紫外激光通过聚焦镜,聚焦到蓝宝石晶圆表面,开激光,并沿水平方向扫描蓝宝石晶圆,对晶圆表面进行加工;通过调整直流电源电压及极板的间距产生适当的静电场场强,使加工过程中产生的带电颗粒在静电场的作用下,被吸附到极板上。本发明可以改善蓝宝石衬底的表面质量,提高蓝宝石晶圆的良品率。
-
公开(公告)号:CN103926253B
公开(公告)日:2017-04-12
申请号:CN201410162687.9
申请日:2014-04-22
Applicant: 哈尔滨工业大学
Abstract: 一种线性调频超声波激励的红外热波无损检测方法与系统,所述方法为:S1、调整超声波激励头与被测样件的空间位置,打开气缸压紧装置的开关,使超声波激励头与被测样件表面紧密接触,由计算机控制信号发生器产生线性调频脉冲信号,驱动超声波发生器功率放大器,使超声波的功率按照线性调频脉冲信号规律变化;S2、打开超声波发生器,采集被测样件表面热波信号;S3、对采集的表面热波信号进行处理,提取表面热波信号的时频域特征信息,通过时频域特征信息集成得到表征材料内部缺陷的特征图像。所述系统包括超声波激励装置、超声波发生器与功率放大器、信号发生器、焦平面红外热像仪及计算机。本发明实现了对材料内部缺陷的快速、准确检测。
-
公开(公告)号:CN103926274A
公开(公告)日:2014-07-16
申请号:CN201410162717.6
申请日:2014-04-22
Applicant: 哈尔滨工业大学
IPC: G01N25/72
Abstract: 一种CFRP层板缺陷的红外热波雷达成像无损检测方法与系统,所述方法为:调整激光光源扩束整形装置与被测样件的空间位置,使激光均匀照射到试样表面,控制数据采集卡产生线性调频脉冲信号,驱动激光功率驱动器,使光纤激光器的功率按照线性调频脉冲信号规律变化;采集被测CFRP试样表面的热波雷达信号;对采集的表面热波雷达信号进行处理,提取热波雷达信号的时频域特征信息,通对特征信息图像的处理与分析,提取样件内部缺陷的特征参数,实现对样件内部缺陷及损伤的无损检测。所述系统包括光纤激光器、激光功率驱动器、数据采集卡、激光光源扩束整形装置、焦平面红外热像仪及计算机。本发明实现了对CFRP层板缺陷的快速、准确检测。
-
公开(公告)号:CN103884737A
公开(公告)日:2014-06-25
申请号:CN201410162688.3
申请日:2014-04-22
Applicant: 哈尔滨工业大学
IPC: G01N25/18
Abstract: 一种碳纤维束热扩散率的红外锁相热波检测方法与系统,所述方法为:将碳纤维束放置到真空干燥箱内的中心位置处,抽真空,调整激光光束准直镜与声光调制器、聚焦镜与碳纤维束的空间位置,使激光光束入射角度满足布拉格衍射条件,使激光光束聚焦到碳纤维束上;对激光光束进行正弦调制,通过激光功率驱动器控制光纤激光器的输出功率;采集被测试样的表面热波信号,提取热波信号的幅值与相位信息,利用幅值及相位分布与材料热扩散率的关系计算出材料热扩散率。所述系统包括光纤激光器、激光功率驱动器、准直镜、声光调制器、聚焦镜、信号发生器、真空干燥箱、真空泵、焦平面红外热像仪及计算机。本发明实现了对碳纤维束热扩撒率的快速、准确检测。
-
公开(公告)号:CN104793201B
公开(公告)日:2018-04-24
申请号:CN201510220880.8
申请日:2015-05-04
Applicant: 哈尔滨工业大学
IPC: G01S13/66
Abstract: 一种跟踪临近空间高超声速目标的修正变结构网格交互多模型滤波方法,本发明涉及修正变结构网格交互多模型滤波方法。本发明的目的是为了解决现有单模型滤波算法、固定结构交互式多模型算法以及传统变结构交互多模型算法无法实现高精度、快速跟踪临近空间高超声速机动目标的问题。通过以下技术方案实现:步骤一、建立惯性参考坐标系,并在惯性参考坐标系中建立目标机动运动的状态方程;步骤二、中心模型采用机动目标当前统计模型,左转弯模型和右转弯模型采用匀速转弯模型;步骤三、基于惯性参考坐标系确定目标跟踪系统测量模型;步骤四、进行状态估计和误差协方差矩阵融合。本发明应用于航行器领域。
-
-
-
-
-
-
-
-
-