-
公开(公告)号:CN115717868A
公开(公告)日:2023-02-28
申请号:CN202211221112.0
申请日:2022-10-08
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明涉及三维测量系统领域技术领域,特别涉及一种非接触式三维扫描测量系统。一种实时在线的三维自动化扫描测量系统,包括:AGV小车、协作机器人、高精度光学扫描测头、固定式光学跟踪器、基于5G技术的数据无线传输单元、数据处理单元以及自动化控制单元。本发明利用高精度光学扫描测头采集被测工件的图像信息,通过5G技术实时、快速传送给数据处理单元,数据处理单元完成点云数据解算、点云去噪、点云网格化及形位公差分析等数据处理,得到的测量结果上传至云服务器,实现测量结果云共享。有效解决了现有在线测量系统在对工件进行实时在线测量时安全性差、编程复杂、适应性差、测量数据因无法实时共享而造成检测效率低的问题。
-
公开(公告)号:CN115435824A
公开(公告)日:2022-12-06
申请号:CN202210919593.6
申请日:2022-08-02
Applicant: 北京航天计量测试技术研究所
IPC: G01D18/00
Abstract: 本发明公开了一种主动发光式运动模拟装置、测试系统和测试方法,涉及计量测试技术领域。该装置的具体实施方式包括:光点点阵和脉冲发生器,光点点阵包括多个光学标志点;脉冲发生器用于为光点点阵的多个光学标志点提供脉冲,控制多个光学标志点按照目标点亮时序点亮,使得多个光学标志点模拟物体运动;其中,多个光学标志点并联连接。该实施方式能够适用于不同使用环境模拟不同运动路径、运动参数等各种应用场景下的物体运动,实现对立体视觉测量设备的计量测试,无论设备应用于何处,皆不会受动力、空间、环境等限制,可以实现光学目标的任意运动形式的计量测试,提升了模拟的可靠性,大大提高了实际应用环境下立体视觉测量设备的测量精度。
-
公开(公告)号:CN114061514A
公开(公告)日:2022-02-18
申请号:CN202111263050.5
申请日:2021-10-28
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明公开了一种相对行程传感器的超高速动态校准装置,该动态校准装置在固定平台的顶部固定安装有传感器支架和激光干涉仪;动滑台与固定平台滑动配合;直线电机和光栅尺固定安装于固定平台的顶部;直线电机的输出端与动滑台固定连接;传感器支架用于固定安装待校准的相对行程传感器;动滑台的顶部固定安装有卷线机构,卷线机构用于卷收相对行程传感器的拉绳且记录旋转角度;在动滑台上安装有与激光干涉仪位置相对的角锥棱镜,激光干涉仪和角锥棱镜配合来测量动滑台的移动距离。上述动态校准装置可以有效地实现相对行程传感器的超高速、大加速度、大位移动态校准,解决了现有相对行程传感器的超高速动态校准难题。
-
公开(公告)号:CN110207587B
公开(公告)日:2020-12-01
申请号:CN201910495513.7
申请日:2019-06-10
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及精密工程测量技术领域,公开了一种角锥棱镜光学顶点测量装置和测量方法,角锥棱镜光学顶点测量装置包括沿同一光路依次设置的激光测距模块、分光镜和角锥棱镜;激光测距模块用于发射测量光,并测量与角锥棱镜的光学顶点之间的距离;分光镜的第一分光面的反射光路上设置有第二反射镜,分光镜的第一分光面相对激光测距模块的透射光路上设有角锥棱镜;分光镜的第一分光面相对第二反射镜的透射光路上设有位置敏感器件,同时位置敏感器件也位于分光镜的第二分光面的反射光路上。本发明利用角锥棱镜光学顶点测量装置,使其应能够应用于激光跟踪仪测量系统中角锥棱镜基准尺的校准过程,实现对角锥棱镜光学顶点空间位置进行精确定位和测量。
-
公开(公告)号:CN110285948A
公开(公告)日:2019-09-27
申请号:CN201910495573.9
申请日:2019-06-10
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01M11/02
Abstract: 本发明涉及精密工程测量技术领域,提供一种回归反光球光学球心瞄准装置及其瞄准方法,其中,回归反光球光学球心瞄准装置包括光源、成像模块、分光镜及反光装置;光源设置在成像模块与分光镜之间;分光镜将光源发出的入射光分解为第一出射光和第二出射光;第一出射光射向待瞄准的回归反光球;反光装置设置在分光镜的一侧,反光装置对接收的第二出射光进行反射,并将输出的反射光射向待瞄准的回归反光球;本发明结构简单、操作方便,通过成像模块观察回归反光球的成像中心相对于成像模块的光学中心的位置,来相应地调整回归反光球的位置,直至实现对回归反光球的光学球心的准确瞄准,从而相应地实现了对回归反光球的光学球心的准确测量。
-
公开(公告)号:CN109470142A
公开(公告)日:2019-03-15
申请号:CN201811397607.2
申请日:2018-11-22
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01B11/00
Abstract: 一种基于圆形标志点的单目位姿测量方法,包括以下步骤:S1:将5个标志点贴在待测立体物体表面上,且保证5个标志点不共面;设5个标志点分别为Pi,i=1-5。S2:在待测立体物体运动的过程中,使用摄像机对待测立体物体进行拍摄,得到待测立体物体不同时刻的采集图像;S3:对S2中所得的采集图像进行图像处理,并根据S2中所得的采集图像的圆度阈值,得到每个编码标志点的大圆与小圆标志点的特征轮廓;S4:根据S3所得每个编码标志点的大圆与小圆标志点的特征轮廓,从而对5个不同标志点进行特征识别,并得到每个标志点的质心像素坐标值;S5:根据S4中所得的每个标志点的质心像素坐标值,得到待测立体物体的三维六自由度位姿信息。
-
公开(公告)号:CN105630000B
公开(公告)日:2019-02-26
申请号:CN201410617423.8
申请日:2014-11-05
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G05D3/00
Abstract: 本发明属于工程测量技术领域,具体涉及一种粗精视场光轴平行性调整方法,目的是解决现有调整方法局限性大的问题。该方法包括安装设备和粗精视场光轴平行性调整两个步骤。本发明采用通过在不同距离处放置靶屏,在屏上承接两光轴目标点,获取目标点的相对位置关系,调整光轴平行性。调整精度估算,若光轴相对位置在50m至97m调整过程中偏离不大于10mm,此时调整误差为100m范围内20mm,则在1km范围内两光轴的偏移量能够控制在200mm,而实验中靶屏接收面积为500mm,能够满足1km距离聚焦瞄准要求。
-
公开(公告)号:CN105627918B
公开(公告)日:2019-01-08
申请号:CN201410635996.3
申请日:2014-11-05
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01B11/00
Abstract: 本发明属于几何量精密测量技术领域,具体涉及一种用于视觉精密测量的轴孔基准现场快速引出工装及方法,目的提供一种引出工装及方法。该工装包括轴基准引出工装和孔基准引出工装。该方法包括建立工装坐标系、标注定向反射球球心在工装坐标系下的三维坐标值、安装轴孔基准现场快速引出工装、测量和数据处理五个步骤。本发明的引出工装和基于该工装的方法能够有效解决应用视觉精密测量系统测量以轴或孔的轴线与基准平面的交点作为基准点定义工件坐标系的大型机械部件时,测量坐标系与工件坐标系的现场快速建立问题。
-
公开(公告)号:CN106403810B
公开(公告)日:2018-11-02
申请号:CN201510463473.X
申请日:2015-07-31
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01B11/00
Abstract: 本发明几何量计量技术领域,具体涉及一种激光跟踪数字化柔性装配测量系统现场校准方法。具体包括以下步骤:步骤一、仪器安装;步骤二、建立测量坐标系;步骤三、构建并测量标准装置坐标系;步骤四、解算标准装置坐标系与测量坐标系间的位置姿态关系;步骤五、通过激光跟踪数字化柔性装配测量系统得到位移和角度变化量的测量值;步骤六、比较测量值和标准装置提供的参考值,得到系统位移和角度测量误差;步骤七、分析系统位置姿态测量不确定度。本发明设计的方法能够有效解决激光跟踪数字化柔性装配测量系统的现场校准问题,能够实现测量系统对位置和姿态测量经过的校准,此方法涉及的标准装置便携性好,能够适应装配现场实施。
-
公开(公告)号:CN104349034B
公开(公告)日:2018-11-02
申请号:CN201310315603.6
申请日:2013-07-25
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及图像亮度自动控制技术领域,具体公开了种图像恒定亮度自动调整的电路。该调整电路中,比较模块A的两个输入端分别接收设定灰度值信号和与比较模块A一个输入端相连接的位置反馈回路的输出信号,比较模块A的输出端直接与位置回路运算网络直接连接;比较模块B的两个输入端分别与位置回路运算网络和速率反馈回路的输出端相连,比较模块B的输出端与速率回路运算网络连接,且速率回路运算网络的输出端依次与数模转换器DAC和功率放大模块相连接,输出电机驱动控制信号。通过调整电路中两回路的反馈比例系数和超前滞后网络,使系统达到高动态跟随且不发生震荡。该调整方法稳定可靠,相机图像能够始终稳定在设定灰度值,响应速度快。
-
-
-
-
-
-
-
-
-