一种基于匹配优化的光场数据深度重建方法

    公开(公告)号:CN106023189A

    公开(公告)日:2016-10-12

    申请号:CN201610325812.2

    申请日:2016-05-17

    Inventor: 邱钧 刘畅 陈佃文

    CPC classification number: G06T2207/10028

    Abstract: 本发明公开了一种基于匹配优化的光场数据深度重建方法,包括:在四维光场中基于加权的区域匹配算法建立视差的目标函数,求解所述目标函数得到初步视差图;建立置信函数,根据所述置信函数的取值将所述初步视差图中的匹配像素分为准确匹配像素和误匹配像素;对所述目标函数设置阈值,根据所述阈值将所述误匹配像素分为平滑误匹配像素和边缘遮挡误匹配像素;以及对所述平滑误匹配像素进行平滑处理,对所述遮挡误匹配像素进行自适应匹配,以便优化所述视差图,并根据优化后的视差图输出场景深度。通过采用本发明提供的方法,能够在四维光场理论下实现高精度的深度重建。

    一种基于旋转光场的三维表面重构方法

    公开(公告)号:CN105976431A

    公开(公告)日:2016-09-28

    申请号:CN201610345960.0

    申请日:2016-05-23

    Inventor: 刘畅 邱钧 苑瑞宁

    CPC classification number: G06T17/30 G06T2200/04 G06T2200/08

    Abstract: 本发明公开了一种基于旋转光场的三维表面重构方法,包括:(1)对旋转光场进行参数化表征,建立重构物体与旋转光场的几何关系;(2)从旋转采样光场中提取每个视点图像的特征点,追踪匹配成功的特征点的坐标轨迹,对坐标轨迹进行参数拟合得到正弦函数曲线;(3)由特征点与旋转光场的几何关系,得到特征点与旋转角度在旋转光场中的正弦函数,根据拟合得到的所述正弦函数曲线计算特征点的三维坐标,重构三维图像,并实现三维测量。通过采用本发明提供的基于旋转光场三维表面重构方法,实现了全视角的三维表面重构,可以为虚拟现实和增强现实提供全视角精确的三维结构信息。

    一种基于条件VAE模型的光场角度超分辨方法

    公开(公告)号:CN119151783A

    公开(公告)日:2024-12-17

    申请号:CN202410944662.8

    申请日:2024-07-15

    Abstract: 本发明涉及一种基于条件VAE模型的光场角度超分辨方法,属于计算成像、机器视觉与数字图像处理技术领域,包括如下步骤:通过采集视点平面等间隔稀疏的光场子孔径图像阵列LFγ和中心子孔径图像LF0分别输入视差估计模块(P)和特征提取模块(F),获得场景初始视差图和不同层级的中心子孔径特征;本发明可以不依赖大规模的高分辨率训练数据集,可对全部光场子孔径图像同步做角度域的超分辨重构,设计一种基于光场数据的空角一致性混合损失函数,使新模型在重构角度高分辨率的子孔径图像时能够利用耦合在子孔径图像种的视差信息,在合成和真实数据集上数值实验结果接近有监督方法,同时能够满足基于深度学习的方法对光场角度域的超分辨。

    一种由螺旋采样光场数据重建三维物体的方法

    公开(公告)号:CN111932648B

    公开(公告)日:2023-05-12

    申请号:CN202010766903.6

    申请日:2020-08-03

    Abstract: 本发明公开了一种由螺旋采样光场数据重建三维物体的方法,其包括:步骤1,将螺旋采样光场数据表示为Ls(x,y,Φ):相机采集到的光场数据为螺旋采样光场数据,s表示螺距,为螺旋角度,表示在第k层下的旋转角度,x、y分别为相机的探测器平面在世界坐标系中的横、纵坐标;步骤2,建立物点在螺旋采样光场下的理想轨迹方程;步骤3,进行亚光圈区域匹配,追踪匹配点在螺旋采样光场数据中的轨迹;步骤4,对轨迹进行参数拟合,得到匹配点的三维坐标,重构三维物体。本发明方法能够实现高精度的物体三维表面重构,由于与螺旋CT数据采集模式相匹配,可与螺旋CT一起构成同时重构物体表面和内部结构信息的双模态成像系统。

    基于Transformer与部件特征融合的鸟类细粒度图像识别方法及装置

    公开(公告)号:CN114626476A

    公开(公告)日:2022-06-14

    申请号:CN202210279684.8

    申请日:2022-03-21

    Abstract: 本发明公开了一种基于Transformer和部件特征融合的鸟类细粒度图像识别方法及装置,该方法包括:步骤1,通过将预处理后的图像输入基于Transformer架构网络的特征编码器,提取出基础特征图,并将所述基础特征图输入注意力模块,生成部件注意力图;步骤2,将所述基础特征图和所述部件注意力图进行双线性注意力池化操作,获得判别性部件特征;步骤3,通过将判别性部件特征在通道维度上进行拼接,得到融合了判别性部件信息的增强特征表示;步骤4,通过将增强特征表示输入全连接层,完成类别的映射,并通过交叉熵损失和中心损失对模型参数进行优化。本发明能够实现在弱监督下对鸟类图像进行高精度识别。

    基于YCbCr超像素和图割的鸟类关键部位提取方法和装置

    公开(公告)号:CN112381830A

    公开(公告)日:2021-02-19

    申请号:CN202011300818.7

    申请日:2020-11-19

    Abstract: 本发明公开了一种基于YCbCr超像素和图割的鸟类关键部位提取方法和装置,该方法包括:步骤1,在YCbCr颜色空间下,对鸟类图像进行超像素分割,形成图割模型的node顶点;步骤2,对鸟类图像中的背景和鸟身体的各关键部位进行多边形标记,并制作背景和关键部位的标签类型,形成图割模型中的Terminal节点;步骤3,利用超像素的颜色直方图和纹理直方图比较两个超像素的相似程度,计算两Node节点之间的边以及Node节点与Terminal节点之间的边;步骤4,构建图割模型中目标函数,并进行优化求解,得到鸟类关键部位分割结果。本发明能够获得鸟类具有区分性的精确关键部位特征,有助于避免拍摄角度、光照及姿态的影响,提高鸟类图像细粒度分类与识别的准确率。

    基于聚焦像点的微透镜阵列型光场相机几何参数标定方法

    公开(公告)号:CN109325981B

    公开(公告)日:2020-10-02

    申请号:CN201811070094.4

    申请日:2018-09-13

    Abstract: 本发明公开了一种基于聚焦像点的微透镜阵列型光场相机几何参数标定方法,该方法包括以下步骤:S1,根据微透镜阵列型光场相机的聚焦成像光路图,得到物点与聚焦像点关于主透镜的映射关系;S2,根据微透镜阵列型光场相机的聚焦成像光路图,得到聚焦像点与探测器像点关于微透镜的映射关系;S3,根据检测得到的探测器像点,求解聚焦像点的坐标;S4,根据S3获得的聚焦像点的坐标,求解标定模型中的相机内部参数矩阵和外部参数矩;S5,通过S4获得的相机内部参数矩阵和外部参数矩阵,标定微透镜阵列型光场相机的几何参数。通过采用本发明提供的方法,进行微透镜阵列型光场相机的几何参数标定,可以为后续光场数据校准和实现计算成像提供可靠的参数。

Patent Agency Ranking